Oxide Reliability of SiC MOSFETs

NIST – Semiconductors Electronics Division
CMOS and Novel Devices Group

Enrique Carrion
Dr. John Suehle
Moshe Gurfinkel
Personal Information

- Georgia State University - Physics B.S.
- Entering 4th year of studies
- Previous research on:
 - Biophysics – FTIR Spectroscopy
 - Optoelectronics – Infrared / UV photodetectors
- Graduate studies in Engineering
Outline

- Background: Transistor (MOSFET), Silicon Carbide (SiC)
- Drain Current (I_D) and Threshold Voltage (V_{TH}) Instability
- Experimental Setup
- Results: I_D and V_{TH} Instability at different temperatures
- Conclusions
MOSFET Basics

- Metal Oxide Semiconductor Field Effect Transistor
- Functions as electronic switch in integrated circuits (ICs)
- E-fields accumulate charge carriers
- Create a conductive channel
SiC Background: Advantages

- Physical Characteristics:
 - Wide E_{gap} (3.26 eV)
 - High thermal conductivity (x2 Si)
 - High saturated drift velocity (higher than GaAs)
 - Radiation hard
 - Native oxide

- Useful Applications:
 - High temperature electronics
 - High power electronics
 - Space
SiC Applications
SiC Background: Drawbacks

- Low mobility (10 cm² / V s)
- V_{TH} instability which causes current degradation

In this work:

- Study temperature dependence of I_D and V_{TH} instability
$V_{TH} = 2\Phi_F + \Phi_{MS} - \frac{\sqrt{4q_0\varepsilon Si N_A \Phi_F}}{C_{ox}} \left(\frac{Q_{ox}}{C_{ox}} \right)$

$I_D = \frac{W}{L} \mu_{eff} C_{OX} \left[(V_G - V_{TH}) V_D - \frac{1}{2} V_D^2 \right]$

oxide charge causes V_{TH} Shift

I_D and V_{TH} Instability in MOSFETs
Experimental Setup

T = 77K – 400K

B1500A Parameter Analyzer

Fast IV Set Up

Cryogenic Probe Station
Results: DC Measurements (slow)

- I_D decreases substantially as temperature is lowered
- V_{TH} increases as we decrease temperature
- This rise is attributed to an increased amount of trapped carriers in the oxide at lower temperatures
Results: Mobility Extraction

- Mobility decreases as temperature was reduced
- Coloumbic scattering is the dominant mechanism
- It is suggested that filled traps at the interface could be the cause for the scattering
Physical Model I: Fermi Potential Increase

- Fermi potential increases with decreasing temperature
- As a result, more traps are filled at threshold
- The increased oxide charge increases V_{TH} and scattering
Results: Fast IV Measurements

- V_{TH} relaxation does not occur since measurement times were short (10 μs)
- I_D decreases while V_{TH} increases as temperature is lowered
Results: Pulse Response
(Fast and Slow Measurement)

- Fast measurements agree with DC measurements results
- The degradation is larger and faster as temperature decreases
Conclusions

- The performance of SiC MOSFETs depends greatly on temperature.
- As the temperature is lowered, V_{TH} increases, while mobility and I_D decrease.
- This thermally activated process is attributed to change in traps occupation in the oxide.
Conclusion – cont.

- This is good news for high temperature and high power application
- Low temperature applications will require a substantial reduction of the interface traps density
Acknowledgements

NIST (SED):
- Dr. John Suehle
- Moshe Gurfinkel
- Dr. David Gundlach
- Dr. Curt Richter
- Dr. Oana Jurchescu
- Justin Horst
- Jin-Woo Kim
- Hao Xiong

AIP, SPS, ΣΠΣ:
- Dr. Gary White
- Dr. Jack Hehn
- Liz Dart Caron
- My fellow Interns
Questions ?