Remote Bias Electrostatic Force Microscopy: Seeing the Invisible

Joseph Tibbs
SPS NIST Research Intern
August 2nd, 2019
Atomic Force Microscopy
Remote Bias
Electrostatic Force Microscopy

Electric Potential

\(\mu \text{m} \)

\(V \)

\(V_{AC}, F_0 \)
Motivation and Goals

• Back End of Line Testing

• Tip characterization

• Standard Structure
Computational Work
\[F(z, t) = -\frac{1}{2} \left[(V_{CPD} - V_{DC}) + V_{AC} \sin(\omega t) \right]^2 \frac{dC(z)}{dz} \]
Theory’s Limitations
Experimental Work
Tip Response over Eight Buried Lines

Y Component (V)

x position (µm)
Conclusion

• Theory and modeling
• Instrumentation documentation
• RB-EFM Demonstrated
Acknowledgements

• Joe Kopanski and the Nanoscale Imaging Group at NIST

• The Society of Physics Students Internship Program

References:
