Modeling the two-quantum coherent spectrum of a semiconductor microcavity (Prescott)

SPS Presentation

Janessa Slone

Embry-Riddle Aeronautical University

About Me

- 2023 Graduate
 - B.S. Space Physics, Minor Computer

Science

- ERAU (Prescott)
- Gravitational Theory
- 2x SPS Intern
 - \circ SOCK
 - NIST Research
- Served on SPS National Council 2 years
 - AZC Zone 16
- NASA Starshade Program
- Love to read

(1) lim J n3+2m+1 mant lum 1+2+ lim 58-4+ 13 - 5) lim (1+2+ 8-4.0+0

Our Project

- Multidimensional Spectroscopy
 - Light-matter interactions
 - Analyzing excitonic spectra
- Gallium Arsenide Nanostructure Semiconductor
 - Many-body interaction inside cavity

Our Goal

Simulate a 2-Quantum Spectra to compare with Experimental results

Our Approach

- Polariton Basis
 - Double-Sided Feynman
 - Diagrams

¥

The Details

The "-itons"

- Polariton: Combination of a photon and an exciton
- Exciton: Combination of an electron and a hole
- Biexciton: 2 X Exciton

What's happening in the lab?

- Short pulses excite sample
- Set of nested interferometers
- Isolates the nonlinear response
- Multiple time delays -> multiple spectral dimension
- Linear v. Nonlinear

What We Saw

- LP/UP Spectra
- Needed a theoretical model to compare our findings based on various parameters

Experimental Spectra

•	5/15
---	-------------

Experimental Spectra

Experimental Spectra

Diagonalization

• Diagonalize the Jaynes-Cummings Hamiltonian:

$$\frac{\hat{H}_{JC}}{\hbar} = \tilde{\omega}_a \hat{\sigma^+} \hat{\sigma^-} + \tilde{\omega}_c \hat{a}^{\dagger} \hat{a} + g_1 (\hat{a}^{\dagger} \hat{\sigma^-} + \hat{a} \hat{\sigma^+})$$

$$\lambda_1, \lambda_2 = \frac{-E_x + E_c \pm \sqrt{(E_x + E_c)^2 - 4(E_c E_x - g^2)}}{2}$$

$$\lambda_1, \lambda_2 = \frac{2E_x + \delta \pm \sqrt{\delta^2 + \Omega}}{2}$$

- Plot λ as a function of δ

1.03

1.02

>

Level Scheme Diagram

Level Scheme Diagram

Level Scheme Diagram

An example (2 quantum):

- Each element of the diagram tells us a different part of the equation • Left Line = ket, Right Line = bra • After various approximations, you can receive an equation like:

 $P^{(3)}(t) = \mu *$

 ε_2

 $arepsilon_3$

$$\begin{aligned} & *(\varepsilon_1(T_2 - T_1)e^{-i\omega_{eg}(T_2 - T_1)} \\ & (T_3 - T_2)e^{-i\omega_{fg}(T_3 - T_2)} \\ & (t - T_3)e^{-i\omega_{fe'}(t - T_3)} \end{aligned}$$

2 Quantum Spectra

- Materials Needed:
 - Energy of UP/LP (diagonalization)
 - Level Scheme Diagram
 - \circ 2D Fourier Transform of P(3)
 - Patience
- Figure has modified detuning value = -3
 - Detuning: Moves both peaks around

Absorption energy (meV)

2 Quantum Spectra

- Materials Needed:
 - Energy of UP/LP (diagonalization)
 - Level Scheme Diagram
 - 2D Fourier Transform of P(3)
 - Patience
- Figure has modified detuning value = -3
 - Detuning: Moves both peaks around

2 Quantum Spectra

- Materials Needed:
 - Energy of UP/LP (diagonalization)
 - Level Scheme Diagram
 - \circ 2D Fourier Transform of P(3)
 - Patience
- Figure has modified detuning value = -3
- Detuning: Moves both peaks around

Upper Manifold

Adding the Biexciton

- Experimental Data including Biexciton
- A "biexciton" can be added to the simulation
 - Has independent energy
 - Another level on the level scheme diagram

Adding the Biexciton

- A "biexciton" can be added to the simulation
 - Has independent energy
 - Another level on the level scheme diagram
 - Filtered level gives this animation -->

14/15

Next Steps

- With the biexciton added, we are close to simulating experimental data
 - Vary our matrix to match peak amplitudes
 - Add parameters or other options to explain
 "biexciton"

This dark state animation has a fixed detuning of -1

Thank You

SPS National NIST Nanoscale Spectroscopy Group Dr. Jared Wahlstrand Dr. Giuseppe Fumero

NIST Nanoscale Spectroscopy

Embry-Riddle Aeronautical University

Contact Me

slonej1@my.erau.edu

Janessa Slone

SPS Presentation