Applications of Machine Learning for Defect Metrology

Abdul Qadeer Rehan
National Institute of Standards and Technology
Advisor: Bryan Barnes
Optics-based Patterned Defect Metrology

• Metrology: the scientific study of measurement

• Metrology Challenge:
 ➢ Fabricate 300 mm wafers
 ➢ Inspect sub 10 nm defects

• Metrology Solution: Optical methods
 ✓ Repeatability
 ✓ Non-destructive and fast
 ❑ Images are unresolved

Scanning electron micrograph

TEOS hard mask, polysilicon, TiN, HfO$_2$ on silicon
Sub-wavelength Detection of Defects

- **Form Birefringence** is the induced difference, due to geometrical factors, in refractive index between different polarizations of light traveling through or reflecting off a periodically structured material.

- Patterned defects perturb this periodicity and are often detectable using optics.
Images collected with Dr. Martin Sohn (NIST) at $\lambda = 193$ nm.

One out of 76 images as a function of focus.

Image Processing

1. Fourier Transform
2. Fourier Shift
3. Highpass Filter + Lowpass Filter
4. Fourier Shift
Inverse Fourier Transform performed after reversing the coordinate shift within python *(not shown).*
Machine Learning - Results

4 Defect types
2 Dies
3 Experimental repeats
2 linear light polarizations
Able to train our model on each individual defect type.
Our model was able to classify defects and no-defect across repeats for the same defect.
Initial identification of A defects using these images.

Confusion matrix for A Defect

<table>
<thead>
<tr>
<th>Defect</th>
<th>Test within repeat</th>
<th>Test across repeat</th>
</tr>
</thead>
<tbody>
<tr>
<td>By</td>
<td>1.0</td>
<td>0.995</td>
</tr>
<tr>
<td>Bx</td>
<td>1.0</td>
<td>0.993</td>
</tr>
<tr>
<td>A</td>
<td>1.0</td>
<td>0.999</td>
</tr>
<tr>
<td>J</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Bibliography

• Ananthan Raghunathan, Steve Bennett, Harlem O. Stamper, John G. Hartley, Abraham Arceo, Mark Johnson, Chris Deeb, Dilip Patel, Jim Nadeau. “13nm gate Intentional Defect Array (IDA) wafer patterning by e-beam lithography for defect metrology evaluation” (10 March 2011)

Questions?
Previous Work

- Simulated high spatial-frequency scattering off structures with two-dimensional periodicity.

- Detectability varied with wavelength

<table>
<thead>
<tr>
<th>Wavelength</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 nm</td>
</tr>
<tr>
<td>47 nm</td>
</tr>
<tr>
<td>122 nm</td>
</tr>
<tr>
<td>157 nm</td>
</tr>
<tr>
<td>193 nm</td>
</tr>
</tbody>
</table>
Image Processing – Fourier Transform

After a coordinate shift within python (not shown).
Image Processing – High / Low Pass Filters
Machine Learning – Convolutional Layer

Input Image

Feature Detector

Feature Map
Machine Learning – Convolutional Layer

Input Image

Feature Detector

Feature Map
Machine Learning – Max Pooling

Feature Map

Max Pooling

Pooled Feature Map
Machine Learning – Flattening

Pooled Feature Map

Flattening

```
1 1 0
4 2 1
0 2 1
```

```
1 1 0 4 2 1 0 2 1
```
Machine Learning – Convolutional Layer

Sharpen:

```
0 0 1 0
0 1 5 1
0 1 0 0
0 0 0 0
```

Blur:

```
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0
```

Emboss:

```
-2 1 0
-1 1 1
0 1 2
```

Edge Detect:

```
1 0
1 1 1
0 1 0
```
Image Processing – Fourier Transform

Problem
Image Processing – Fourier Shift

Problem

Machine Learning for Defect Metrology
Machine Learning - Results

Cross defect classification for Defect A

Count vs. Data

- No Defect
- Defect
Machine Learning for Defect Metrology

Defect Image

Original Image

Activation of 1st CL

1st Pooling Layer

Activation of 2nd CL

2nd Pooling Layer

Flattened Layer

Fully Connected Layer

Final Output

No Defect Image
Machine Learning - Results

Trained: Defect A Repeat 1, Tested: Defect A Repeat 2
Confusion Matrices

<table>
<thead>
<tr>
<th></th>
<th>By</th>
<th>Bx</th>
<th>A</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[3294 66]</td>
<td>[2149 11]</td>
<td>[720 0]</td>
<td>[2396 4]</td>
</tr>
<tr>
<td></td>
<td>[0 3360]</td>
<td>[0 2160]</td>
<td>[1 719]</td>
<td>[25 2375]</td>
</tr>
<tr>
<td></td>
<td>[3210 0]</td>
<td>[2595 45]</td>
<td>[3120 0]</td>
<td>[3043 77]</td>
</tr>
<tr>
<td></td>
<td>[0 3210]</td>
<td>[13 2627]</td>
<td>[6 3114]</td>
<td>[0 3120]</td>
</tr>
<tr>
<td></td>
<td>[2638 2]</td>
<td>[2640 0]</td>
<td>[2880 0]</td>
<td>[2400 0]</td>
</tr>
<tr>
<td></td>
<td>[0 2640]</td>
<td>[33 2607]</td>
<td>[565 2315]</td>
<td>[84 2316]</td>
</tr>
</tbody>
</table>