ABSORBER COATINGS FOR MID-INFRARED ASTROPHYSICS

DAHLIA BAKER1, EDWARD WOLLACK2, KARWAN ROSTEM2,3

1. COE COLLEGE, DEPARTMENT OF PHYSICS
2. OBSERVATIONAL COSMOLOGY LAB, NASA GODDARD SPACE FLIGHT CENTER
3. DEPARTMENT OF PHYSICS AND ASTRONOMY, THE JOHNS HOPKINS UNIVERSITY
• Physics and Mathematic Major

• Physics Club and Outreach

• Studied Computational Biophysics, moving on to Planetary Science research
BACKGROUND

• HIRMES - High Resolution Mid-InfrarEd Spectrometer
 • Functioning in the 20-200 micrometer range
 • Eliminate

• SOFIA – Stratospheric Observatory for Infrared Astronomy
APPROACH

• **Goals**
 - Create a material that absorbs stray light
 - Lightweight, easy applicable
 - Known dielectric function
 - What is this?
 - Describes the electric response to incident radiation
 - Diffusively reflects rather than specularly reflects
 - Withstand cryogenic temperatures (µK)

• **First Step**- Characterize the materials
 - Dielectric functions

• **Second Step**- Matlab Model
 - Model each sample layer with found dielectric function

• **Third Step**- Manufacturing
 - Create sample plates
APPROACH

3M Glass Microspheres
~100 microns in diameter

Epotech 377H Graphene-Loaded Epoxy
sC(5):377(65):SiOx(30)

Specular

Diffuse

Aeroglaze Z306
<table>
<thead>
<tr>
<th>Sample Letter</th>
<th>Thickness of Epoxy (µm)</th>
<th>Final Layer Count</th>
<th>Composition (Layer Order)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>579</td>
<td>2</td>
<td>Epoxy, Z306</td>
</tr>
<tr>
<td>B</td>
<td>644</td>
<td>3</td>
<td>Epoxy, Z306, K1</td>
</tr>
<tr>
<td>C</td>
<td>449</td>
<td>3</td>
<td>Epoxy, K1, Z306</td>
</tr>
<tr>
<td>D</td>
<td>505</td>
<td>4</td>
<td>Epoxy, K1, Z306, K1</td>
</tr>
<tr>
<td>E</td>
<td>707</td>
<td>1</td>
<td>Epoxy</td>
</tr>
<tr>
<td>F</td>
<td>494</td>
<td>2</td>
<td>Epoxy, K1</td>
</tr>
</tbody>
</table>
DIELECTRIC CHARACTERIZATION

- Frequency response data taken with a microwave network vector analyzer

![WR28.0 Sampleholder: K1 Microspheres](image)

- Periodic structure of reflection shows constructive and destructive interference
- Shows the “true density” as seen by an incident electromagnetic wave
- Loss is due to dielectric properties of microspheres, scattering due to geometry is not considered
THE MODEL

<table>
<thead>
<tr>
<th>Material</th>
<th>Thickness (µm)</th>
<th>Dielectric (-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>500</td>
<td>1 + 1x10^8i</td>
</tr>
<tr>
<td>Epoxy 377H</td>
<td>500</td>
<td>7.4 + 0.4i</td>
</tr>
<tr>
<td>3M K1 Microspheres</td>
<td>100</td>
<td>1.1 + 0.002i</td>
</tr>
<tr>
<td>Aeroglaze Z306</td>
<td>50</td>
<td>2.6 + 0.6i</td>
</tr>
</tbody>
</table>

Response vs. Wavelength
RESULTS

• **Conclusions**
 • Our proposed material can be manufactured at a small scale
 • Model predicts correct response
 • Drawback – model cannot predict response from diffuse scattering due to microspheres

• **Further Studies**
 • Measure optical frequency-dependent response with a Fourier Transform Spectrometer
ACKNOWLEDGEMENTS

Coe College Advisors

Steve Feller
Ugur Akgun
Firdevs Duru
Mario Affatigato
ACKNOWLEDGEMENTS

AIP/SPS
ACKNOWLEDGEMENTS

I would like to give special thanks to the Observational Cosmology Lab at NASA Goddard Space Flight Center and my mentors:

- Edward J. Wollack
- Karwan Rostem
- Dave Chuss and Riley McCarten, Villanova University
- Paul Mirel, Observational Cosmology Lab, NASA GSFC
- Kyle Johnson, George Washington University