Simulating Infrared Transmission Through a Porous Dielectric Foam

Max Torke
Sonoma State University
Dr. Edward Wollack
NASA Goddard Space Flight Center
Infrared Radiation
Infrared Radiation
Dielectric Foam

• Filter
 – Allows transmission of preferred frequency, excludes unwanted frequencies

• Absorption, reflection, scattering
Potential Applications

• ICESat-2
 – Cryogenically cooled detectors
• Cosmic Microwave Background satellites
 – Reduce measurement noise
Project Goal

• Simulate transmission of infrared radiation
 – Reflection, absorption, scattering thermal infrared radiation

• **Determine optimal dielectric width** by generating plots of transmission vs. frequency
What is Zitex?

- Fibrous-porous Teflon
- Zitex can be used as a frequency filter for infrared radiation
Simulator Variables

- Electric permittivity
 - Propagation of light
 - Absorption (scattering is function of squared freq.)

- Absorption poles
 - Absorption strength
 - Absorption frequencies

- Phase decoherence
Decoherence

- Initial decoherence of incident wave
- Decoherence due to surface roughness

Rough surface causing decoherence
Zitex G-110 Data

- Complex dielectric constant
Zitex G-110 Data

- Add scattering effect, dielectric function
Zitex G-110 Data

- Add rotational absorption poles
Results

• Developed simulator that accurately fits measured spectra
• Can be used to determine optimal dielectric width
Acknowledgements

- NASA
 - Edward Wollack
 - Mablelene Burrell
 - Robert E. Gabrys
 - Felipe Colazo Petit
 - Karwan Rostem

- AIP
 - Sean Bentley, Kendra Redmond, Courtney Lemon

- Peter Rooney
References

5. D. M. Pozar, Microwave Engineering, 4th ed. (John Wiley and Sons, Inc., 2011)