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Abstract.  In  2011,  Mr.  Dan  Solomon  proposed  a  model  of  a  quantized  scalar  field  interacting  with  a  time-dependent                    
Mamaev-Trunov  potential  in  two-dimensional  Minkowski  spacetime.  This  model  is  governed  by  the  Klein-Gordon  wave                
equation  with  a  time-dependent  potential.  Mr.  Solomon  claims  that  this  model  violates  both  the  classical  energy                  
conditions  of  special  relativity  and  the  quantum  energy  conditions  of  quantum  field  theory  in  curved  spacetime.  Every                   
classical  energy  condition  can  be  violated,  and  their  natural  replacements  are  known  as  quantum  inequalities.  Mr.                  
Solomon  attempted  to  prove  violations  of  the  spatial  and  temporal  quantum  inequalities,  and  he  correctly  assumed  that                   
the  negative  energy  splits  into  two  fluxes  at  the  Cauchy  surface,  where  the  potential  is  turned  off.  Unfortunately,  Solomon                     
neglects  the  contribution  to  the  energy  density  due  to  particle  creation  when  the  potential  is  turned  off  at  time   t  =  0 .  In                         
this  project,  we  calculate  the  contribution  to  the  stress  energy  tensor  due  to  particle  creation.  We  show  that  while  the                      
classical   energy   conditions   are   violated,   the   quantum   energy   inequalities   hold,   contrary   to   Mr.   Solomon’s   statements.   

  
SCIENTIFIC   BACKGROUND   

  
Mathematical   Background   

  
The  mathematical  foundation  of  quantum  mechanics  consists  of  wave  functions  and  operators.  Wave  functions                

express  the  state  of  a  system  while  operators  represent  observables.  Linear  algebra  is  the  underlying  mathematics  of                   
quantum  mechanics,  where  abstract  vectors  represent  wave  functions  and  observables  are  performed  as  linear                
transformations  [1].  Quantum  mechanics  uses  Dirac  notation  to  represent  a  vector  as  a  ‘ket’,  shown  as  .  The  dual                  a⟩  ∣    
vector   for   a   ket   is   a   ‘bra’,   with   the   inner   product   ‘bra-ket’   written   as   .   a∣b〉  〈   

An  inner  product  space  is  a  vector  space  over  the  real  or  complex  numbers  containing  inner  products  or  dot                     
products.  The  vector  spaces  in  which  wavefunctions  exist  are  called  Hilbert  spaces.  Hilbert  spaces  are                 
finite-dimensional  and  span  the  complex  numbers  [2].  A  Hilbert  space  is  a  Banach  space  where  the  norm,  or                    
mapping,  is  an  inner  product.  Hilbert  spaces  are  mathematically  easier  to  handle  than  general  Banach  spaces  due  to                    
orthogonality.  A  Hilbert  space  is  a  complete  inner  product  space,  an  example  of  which  is  the  collection  of  square                     
integrable   functions,   

where dx ,f (x)  ∫
b

a
f (x)∣ ∣2 < ∞ (1)   

denoted  as  .  While  this  is  a  relatively  small  vector  space,  it  is  the  Hilbert  space  referred  to  in  quantum    (a, )L2 b                   
mechanics  [2].  The  calculations  in  this  paper  use  two-dimensional  Minkowski  spacetime.  This  refers  to  a  Euclidean                  
manifold,  with  one  spatial  dimension  and  one  temporal  dimension,  where  the  spacetime  interval  between  two  events                  
does   not   depend   on   an   inertial   frame   of   reference   in   which   the   events   were   measured.     

Another  mathematical  object  used  throughout  this  paper  is  a  tensor,  which  is  analogous  to  a  vector-composed                  
matrix.  Tensors  are  arrays  of  functions  of  spatial  coordinates.  The  most  common  tensor  in  this  paper  is  the                    
stress-energy   tensor,   with   the   general   form   of,   

 T (x,t)
ˆ = T  T  T  T  ( L

tt tx xt xx ) , (2)   
which  describes  the  density  and  flux  of  matter  and  energy  in  spacetime.  This  is  a  generalization  of  the  stress  tensor                      
of  Newtonian  physics.  In  general  relativity,  the  Einstein  tensor  describes  space-time  curvature  and  the  energy                 
momentum   tensor   describes   localized   matter   distribution.   
  



Quantum   Field   Theory   
  

In  quantum  mechanics,  a  single  particle,  with  spin  =  ½,  has  two  quantum  states  in  a  two-state  system:  one  state                      
represented  as   and  the  other  as  .  In  the  Copenhagen  model  of  quantum  mechanics,  a  particle  exists  in  a    ↓⟩  = ∣      ↑⟩  = ∣              
state  of  superposition  where  the  particle  is  simultaneously  in  both  states.  The  superposition  wave  function  for  a                   
system   with   two   spatial   states,    A    and    B ,   can   be   written   as,   

ψ = 1
√2

∣↑⟩∣A⟩ ∣↓⟩∣B⟩[ +  ] . (3)  
A  wave  function  describes  the  state  of  a  particle.  While  a  particle  is  constrained  to  move  in  one  dimension,                     

influenced  by  a  specified  force,  a  wave  function  is  dependent  on  position  for  any  given  time.  Until  an  act  of                      
measurement  collapses  the  wave  function,  particles  do  not  have  specific  dynamical  properties  like  position  or                 
momentum  [1].  Upon  measurement  of  the  system,  the  wavefunction  spontaneously  decays  and  the  observer  sees  the                  
system  existing  in  only  one  of  the  two  states.  States  are  entangled  if  they  are  directly  correlated  with  one  another  [3].                       
All  observables  in  a  system  have  corresponding  wavefunctions  [1].  These  wavefunctions  are  mathematically               
represented  by  a  superposition  of  pure  time  harmonic,  or  sinusoidal,  vibrations.  Multiplying  the  wavefunction  by  its                  
complex  conjugate  and  integrating  gives  the  probability  of  finding  the  particle  between  two  points  for  a  given  time.                    
A  particle’s  probability  density  is  described  as  a  wave  group.  The  time-dependent  Schrödinger  equation  [1],  written                  
below,   can   be   solved   to   find   a   particle’s   wave   function   ,  (x, )ψ t  

ℏ ψ.i ∂t
∂ψ =− ˉh2

2m ∂x2
∂ ψ2

+ V (4)  
In  this  paper,  the  potential   V  has  no  explicit  time-dependence.  The  general  solution  to  the  time-dependent                  

Schrödinger  equation  is  a  linear  combination  of  separable  solutions,  a  continuous  sum  over  wavenumbers.  The                 
solution,  called  a  wave  packet,  carries  a  range  of  energies  and  speeds.  Wave  packets  are  localized  state  functions                    
consisting  of  a  packet  of  waves  with  wavenumbers  and  frequencies  centered  around  a  single  value   k   [1].  As  time                     
increases,  quantum  wave  packets  disperse,  meaning  that  the  width  of  the  wave  packet  increases  with  time.  This                   
happens  because  each  plane-wave  component  in  the  wave  packet  has  a  unique  wave  number  and  propagates  at  a                    
different  velocity  [5].  Wave  packets  for  bound  states  have  discrete  harmonic  components  [11]  and  wave  packets  of                   
free  electrons  with  initially  localized  position  disperse  over  time.  Wave  packets  of  classical  macroscopic  objects  also                  
have  dispersion  times,  albeit  on  a  much  longer  time  scale.  Dispersion  is  an  important  aspect  of  waves  and  wave                     
propagation.  The  dispersion  relation,  different  for  various  physical  systems,  is  the  relationship  between  a  wave’s                 
frequency  and  wavenumber.  In  quantum  mechanics,  the  smaller  the  value  of  the  spatial  uncertainty  ,  the  faster                σx    
electron   wave   packets   disperse   [5].     

According  to  Heisenberg’s  uncertainty  principle,  one  cannot  simultaneously  measure  momentum  and  position              
with  precise  and  accurate  measurements  for  both.  Instead,  the  more  precisely  one  measures  momentum,  the  less                  
precisely  one  can  measure  position,  and  vice  versa.  With  the  standard  deviation  denoted  by  ,  the  Heisenberg                σ    
uncertainty   principle   for   position   and   momentum   is,   

σ .σx p ≥ ˉh
2 (5)  

  
Energy   Conditions   in   Classical   General   Relativity   

  
We   treat   spacetime   as   a   classical   curved   Lorentzian   manifold.   This   manifold   is   subject   to   the   Einstein   equation,   

Rg g πG T .Rμν − 2
1

μν − Λ μν = 8 N μν (6)  
If   is  a  future-directed  timelike  vector  and   is  a  future-directed  null  vector,  then  the  stress-tensor  for  matter   uμ        kμ            
under   classical   physics   obeys   the   classical   energy   conditions   contained   in   Table   1.   
  

TABLE   1.    Energy   Conditions   in   Classical   General   Relativity.   

Energy   Condition   Inequality   
Weak   Energy   Condition   u u ≥0T μν

μ ν  

Null   Energy   Condition   

Strong   Energy   Condition   

Dominant   Energy   Condition   

 k k ≥0T μν
μ ν  

 u ≥0  T T g( μν − 2
1

μν) uμ ν  

 u ≥0T μ
ν

ν  



In  classical  physics,  observer-measured  energy  density  is  non-negative.  Thus,  for  all  timelike  vectors  ,  the  matter               ua    
stress-energy  tensor   obeys  the  weak  energy  condition.  The  weak  energy  condition  constrains  the  behavior  of    T ab               
Einstein’s  field  equation  solutions.  At  a  critical  stage  during  gravitational  collapse,  the  weak  energy  condition  makes                  
singularity   formation   inevitable.   Thus,   gravitational   mass   must   be   positive   [9].     

  
Quantum   Inequalities     

  
A  general  feature  of  quantum  field  theory  is  the  proposition  every  classical  energy  condition  can  be  violated.                   

This  means  that  energy  density  under  quantum  field  theory  can  be  negative  without  bound.  Situations  yielding                  
observer-measured  negative  energy  density  include  the  Casimir  effect  (explanation  below,  see  Figure  1),  black  hole                 
evaporation,  and  squeezed  light  states.  Without  placing  restraints  on  negative  energy  density,  it  is  possible  to  violate                   
the  cosmic  censorship  conjecture  that  every  singularity  must  have  an  event  horizon  to  hide  the  singularity  from                   
direct  observation.  In  addition,  it  would  then  be  possible  to  experience  closed  time-like  curves  or  traversable                  
wormholes,  both  of  which  are  not  allowed  under  classical  physics  [9].  The  constraints  on  negative  energy  density                   
come  in  the  form  of  quantum  inequalities,  which  are  “natural”  mathematical  replacements  for  the  classical  energy                  
conditions.  Quantum  inequalities  constrain  the  duration  and  magnitude  of  negative  energy  fluxes.  Most  often,  a                 
quantum  energy  inequality  is  averaged  along  the  worldline,  or  geodesic,  of  an  inertial  observer.  This  paper  will                   
focus   on   the   worldline   quantum   inequality   with   mention   to   the   spatial   quantum   inequality.     

  
Cauchy   Surface   

  
A  Cauchy  surface  is  a  plane  in  spacetime  where  points  on  the  plane  are  spatially  related  but  have  no  time                      

difference.  A  spacetime  possessing  a  Cauchy  surface  is  inherently  causal.  Causality  implies  that  the  Cauchy  surface                  
can  be  thought  of  as  an  instant  in  time  where  the  initial  conditions  of  the  plane  uniquely  determine  future  events.  We                       
study  a  two-dimensional  spacetime  where  the  Cauchy  surface  refers  to  the  one-dimensional  plane  of  .  The  term                t = 0    
IN   region   refers   to   events   in   the   causal   past   where     and   the   OUT   region   refers   to   the   causal   future   where   .   t < 0 t > 0   

  
The   Casimir   Effect   

  
The  Casimir  effect  is  a  physical  force  due  to  the  presence  of  a  quantized  field.  Mechanically  speaking,  it  is  the                      

attractive  force  between  two  parallel  perfectly  conducting  plates  held  at  a  close  separation  distance.  The  force  arises                   
from   the   quantum   and   thermal   vacuum   fluctuations   of   the   electromagnetic   field   [15].   

  
FIGURE   1.    The   C1asimir   effect   (red)   in   two-dimensional   spacetime.   

  
The  Casimir  effect  for  a  two-dimensional,  potential-free  cylinder  spacetime  is  displayed  in  Figure  1.  The                 

expression   for   a   cylinder   spacetime   with   no   potential   for   the   OUT   region   ( )   is,  t > 0  
.  〈0 〉˜

L T ∣ ∣ 00
 ∣ 
∣ 0̃L Ren. = ( π−

6L2 + 1
4lL) δμν (7)  

  



The   expression   for   a   cylinder   spacetime   for   the   IN   region   ( )   is,  t < 0  
.  〈0 〉L T ∣ ∣ 00

 ∣ 
∣ 0L Ren. = ( π−

6L2 + A
L2 ) δμν (8)  

which   is   true   for   all   locations   except   that   of   the   delta-function   potential.     
A  motivating  problem  for  this  research  is  calculating  the  Casimir  effect  for  a  scalar  field  in  the  presence  of                     

delta-type  potentials.  The  “Casimir  problem”  refers  to  the  response  of  a  quantum  field’s  fluctuations  in  response  to                   
externally  imposed  boundary  conditions.  Physically,  there  are  no  interactions  strong  enough  to  enforce  a  boundary                 
condition   on   every   frequency   of   a   fluctuating   field.   Graham   et   al.   explore   a   physical   model   of   this   situation   [12].   

  
Wightman   Axioms   

  
Despite  the  long  history  of  quantum  field  theories,  there  are  no  rigorous  descriptions  of  the  structure  of  quantum                    

field  theories.  Quantum  field  theory  is  often  described  as  the  quantization  of  classical  field  theories.  Quantum  field                   
theories  that  use  axioms,  known  as  axiomatic  quantum  field  theories,  take  a  more  systematic  approach.  Axiomatic                  
quantum  field  theory  can  explain  the  transition  from  Minkowski  spacetime  to  Euclidean  spacetime,  therefore                
explaining   the   transition   from   relativistic   quantum   field   theory   to   Euclidean.     

Wightman  fields  are  operator  valued  distributions  satisfying  the  Wightman  Axioms.  The  Wightman  functions,               
which  are  used  in  this  paper,  are  the  functions  that  correlate  to  Wightman  fields.  Wightman  quantum  field  theory                    
consists  of  the  space  of  states  (the  projective  space  of  a  complex  Hilbert  space),  the  vacuum  vector,  a  unitary                     
representation  of  the  Poincaré  group  (which  is  the  group  of  Minkowski  spacetime  isometries,  or  length-preserving                 
linear  transformations),  and  field  operators.  This  data  collectively  satisfies  the  three  Wightman  Axioms  of                
covariance,   locality,   and   spectrum   condition   [15].     

  
Green’s   Functions   

  
Green’s  theorem  is  often  used  in  electrostatics  problems  involving  finite  regions  of  space  with  bounding  surfaces                  

and  prescribed  boundary  conditions.  This  is  because  it  provides  mathematical  tools  to  handle  boundary  conditions                 
[6].  In  previous  papers,  Green’s  functions  are  used  to  derive  the  energy  conditions  with  a  closed  boundary  and                    
Cauchy   boundary   conditions   [7].   One   begins   with   the   wave   equation,   which   typically   has   the   basic   structure,   

Ψ πf∇2 − 1
c2 ∂t2

∂ Ψ2
=− 4 (x, )t , (9)  

where   is  a  known  source  distribution  and   c   is  the  velocity  of  wave  propagation  in  the  medium.  The  solution   f (x, )t                    
to  the  wave  equation  can  be  represented  as  a  sum  of  mode  functions.  The  Euclidean  two-point  function  is  equal  to                      
the  sum  of  the  mode  functions  and  is  the  analogue  of  a  Feynman  Green’s  function,  G( x ,  x’ ),  for  the  Lorentzian                      
metric.   Thus,   to   solve   the   wave   equation,   it   is   helpful   to   first   find   a   Green’s   function.   

The  general  solution  for  a  Green’s  function  is  comprised  of  the  advanced  and  retarded  Green’s  functions,                  
,   ,   respectively.   The   general   solution   for   the   Green’s   function   is,  (x; )  G( )− x′ (x; )  G(+) x′  

G GG (R) = A (+) (R) + B ( )− (R) , (10)  
where  ,  where  given  the  vectors  of  points   and  .  Coefficients   A  and   B  depend  on  the    R = R∣ ∣  R   = x − x′       x    x′         
boundary  conditions  of  the  given  problems.  ,  the  in-traveling  wave,  exhibits  the  causal  behavior  associated  with        G(+)           
a  wave  disturbance.  The  term   represents  a  diverging  spherical  wave  that  propagates  from  the  origin.       GA (+) (R)            
Likewise,   is  the  advanced  Green’s  function  where  the  term   represents  a  converging  spherical  wave   G( )−          GB ( )− (R)       
traveling   toward   the   origin   [6].     

The   time-dependent   Green’s   functions   for   a   nondispersive   medium   are,   
δ  G(±) (R, )τ = 1

R τ∓( c
R) , (11)  

where  the  Green’s  functions  are  dependent  on  the  relative  distance,   ,  and  the  relative  time,  ,             R = x − x′        τ = t − t′  
between  source  and  observation  point.  The  delta  function’s  argument  shows  that  an  effect,  observed  at  point   x  at                    
time  t,  is  caused  by  the  action  of  a  source  located  a  distance   R  away  occurring  at  an  earlier  (retarded)  time.  The  time                         
difference,  represented  as  ,  is  the  time  of  propagation  of  the  disturbance  between  the  two  points.  To  solve  the     c

R                 

wave   function,   one   can   integrate   the   Green’s   function     and   source   distribution ,    G(±) x, ; ,( t x′ t′) f (x , ) ′ t′   

G (x , )d x dt .  Ψ(±) (x, )t = ∬ 
 

(±) x, ; ,( t x′ t′) f ′ t′ 3 ′ ′ (12)  



This  equation  applies  to  a  source  distribution  localized  in  time  and  space.  To  apply  the  above  equation  to  a  definite                      
physical   problem,   one   may   add   solutions   to   the   homogeneous   equation   [6].     

By  calculating  the  solutions  to  the  wave  equation,  one  can  construct  the  quantum  inequalities  by  summing  the                   
solution  mode  functions.  Thus,  by  knowing  the  two-point  function  for  the  given  spacetime,  one  can  calculate  the                   
quantum   inequalities   by   Euclideanizing   and   taking   the   necessary   derivatives   of   the   two-point   function   [7].     

  
PROJECT   INTRODUCTION   

  
 In  classical  physics,  there  exist  classical  energy  conditions  that  mathematically  constrain  energy  density  in  space                  

and  time  to  be  nonnegative  (Table  1).  These  come  from  the  observation  that  mass  is  only  positive  in  value.                     
However,  in  quantum  physics,  energy  density  can  be  negative.  Quantum  inequalities  are  natural  replacements  for                 
classical  energy  conditions  and  are  local  constraints  on  the  extent  and  magnitude  of  negative  energy  density  in                   
spacetime.   In   quantum   field   theory,   the   energy   density   can   be   calculated   from   the   Wightman   two-point   function,     

.  ρ (x, , , )t x′ t′ = 2
1 ∂ ∂ ∂( t

′
t + ∂x

′
x)G x, , ,( t x′ t′)  (13)  

Mamaev  and  Trunov  proposed  a  novel  method  to  calculate  the  Casimir  effect,  explained  below.  They  calculated                  
the  vacuum  expectation  value  of  the  stress-energy  tensor  for  a  relativistic  quantum  field  theory,  where  the  quantum                   
field  interacts  with  an  externally  applied  potential  featuring  two  Dirac  delta  functions.  A  paper  by  Solomon  asserts                   
that  this  violates  the  spatial  energy  condition.  However,  Solomon  did  not  include  the  energy  contribution  of  particle                   
creation   to   the   stress-energy   tensor.   In   contrast,   in   this   paper   we   include   the   effects   of   particle   creation.     

We  propose  calculating  the  energy  contribution  to  the  stress-energy  tensor  caused  by  particle  creation  at  the                  
Cauchy  surface,  where  .  To  mathematically  prove  the  correctness  of  this  approach,  we  examine     t = 0            
two-dimensional  Minkowski  spacetime  in  the  presence  of  an  external,  time-dependent  Mamaev-Trunov  potential.              
For   simplicity,   we   are   using   the   relativistic   Klein-Gordon-Fock   wave   equation   for   massless,   spinless   particles,   

.∂ ϕ2

c ∂t2 2 − ∂x2
∂ ϕ2

+ V (x, )t ϕ = 0 (14)  
The  Klein-Gordon-Fock  relativistic  wave  equation  originates  from  the  Schrödinger  equation  and  describes  energy               
and  momentum.  The  equation  is   second  order  in  space  and  time  and  describes  the  dynamics  of  a  boson  particle.  We                      
use  this  equation  because  it  is  mathematically  simpler  to  use  than  the  Dirac  equation  for  relativistic  particles  with                    
half   integer   spin.   

The   scalar   quantum   field   with   the   time-dependent   potential   is,     
λV ( )ϕ ,∂ ϕ2

c ∂t2 2 − ∂x2
∂ ϕ2

+ 2 (x) θ − t = 0 (15)  
with   the   Mamaev-Trunov-type   potential   given   by,   

 V (x) = δ[ x( − 2
a) + x( − 2

a)] . (16)  
The  potential  is  two  delta-functions  barriers  separated  by  a  distance   and  centered  at  the  origin.  The  presence  of            a          
the  delta-functions  causes  a  constant,  negative-energy  Casimir  effect  in  the  empty  region  between  them  and  zero                  
energy  density  outside  of  the  delta-functions  [3].  When  the  potential  is  shut  off,  the  negative-energy  Casimir  effect                   
becomes   dynamical,   and   begins   to   move   left-   and   right-ward   in   the   spacetime.   

Substituting   (10)   into   (9)   yields,   
,∂ ϕ2

c ∂t2 2 − ∂x2
∂ ϕ2

+ λ δ[ x( + 2
a) + δ x( − 2

a)] Θ ( )− t ϕ = 0 (17)  
where   λ   is   the   coupling   constant,    𝛿    is   the   Dirac   Delta   function,   and    𝛩    is   the   unit   step   function.     
  

Results   of   Mamaev   And   Trunov   
  

Mamaev  and  Trunov,  in  their  1981  paper  [11],  proposed  a  novel  method  to  calculate  the  Casimir  effect  by                   
calculating  the  vacuum  expectation  value  of  the  stress-energy  tensor  for  a  relativistic  quantum  field  theory.  Mamaev                  
and  Trunov  calculate  the  vacuum  energy-momentum  tensor  for  bounded  manifolds  without  necessitating  a  cut-off                
value.  They  replace  impenetrable  boundaries  with  localized  potentials  dependent  on  .  This  method  uses  a  quantum            λ       
field  that  interacts  with  an  externally  applied  potential-  the  “Mamaev-Trunov  potential”  used  in  this  paper.  Mamaev                  
and  Trunov  calculate  the  well-behaved  difference  between  the  expectation  value  of  the  stress-energy  tensor  with  and                  
without  a  potential.  By  taking  the  limit  of  the  coupling  strength  as  the  potential  approaches  infinity,  they  calculate                    
the   traditional   Casimir   effect.     



The  quantum  field,  ,  in  this  model  utilizes  the  Klein-Gordon-Fock  equation  with  a  time-independent     (x, )Φ t            
potential,  

.  ∂ V (x)[ t
2 − ∂x

2 + λ ]Φ (x, )t = 0 (18)  
Mamaev  and  Trunov  determine  the  kinetic  energy  density,  the  part  of  the  energy  density  that  does  not  explicitly                    

dependent  on  the  scalar  potential,  of  a  massless  scalar  field  in  one-dimensional  spacetime.  They  use  a  simple                   
potential  comprised  of  two  Dirac  delta  functions  that  have  a  separation  distance  of  a  and  are  centered  around  the                     
origin.   The   potential   is   given   by,     

 V (x) = δ x( + 2
a) + δ x( − 2

a) . (19)  
Teis  yields  a  negative  result  for  kinetic  energy  density  in  the  region  between  ,  shown  in  grey  in  Figure  2.  Next,               ,2

a−
2
a         

they   calculate   the   renormalized   vacuum   expectation   value   of   the   energy-density   operator.   This   is   expressed     
  

  
FIGURE   2.    Mamaev   and   Trunov’s   solution   for   the   Casimir   effect   (red).   

  
mathematically   as,   

 〈Ω 〉T ∣ ∣ 00
 ∣ 
∣ Ω ren

(x) = ε Θ[ x( + 2
a) − Θ x( − 2

a)] , (20)  
where  ,  and   is  the  contribution  to  the  vacuum  expectation  value  due  to  the  “odd”  mode  solutions  and   ε = ε1 + ε2   ε1                 

  is   the   contribution   to   the   vacuum   expectation   value   due   to   the   “even”   mode   solutions.   ε2   
An   approximation   of   the   value   of   the   Casimir   energy   density   is   given   by,   

≃ .ε (λ, )a =− λ
2πa ∫

∞

0

dy yey

ye +sinh sinh y y
2
λa + λ

2πa ∫
∞

0

dy yey

ye +cosh cosh y y
2
λa − 3πλ

4a(18λa+7π )2 (21)  

  

  
FIGURE   3.    Our   competing   model.   The   difference   between   Mr.   Solomon's   model   and   ours   is   that   our   model   includes   boundary   

conditions   for   the   energy   fluxes.   
  



Results   of   Graham   et   al.   
  

Graham  et  al.  [12]  explore  a  physical  model  of  the  Casimir  effect  by  coupling  a  fluctuating  field  to  a  smooth                      
background  potential  where  the  boundary  condition  is  implemented  in  a  certain  limit.  Graham  et  al.  develop  new                   
methods  to  compute  renormalized  energy  densities  and  single  loop  quantum  energies.  The  former  process  is  the                  
method  we  use  in  this  paper  to  compute  the  renormalized  energy  density.  The  approach  of  Graham  et  al.  uses                     
scattering  data  to  compute  Green’s  functions  for  time-independent  background  fields.  Their  calculation  is  useful  for                 
the  numerical  study  of  single  limits  since  it  both  avoids  oscillating  terms  as  well  as  exponentially  growing  and                    
decaying   terms.     

We  examined  the  results  of  Graham  et  al.  [12]  to  learn  from  their  general  approach  to  calculating  a  complete                     
renormalization  of  the  expectation  value  of  energy  density  for  a  scalar  field  in  the  presence  of  a  potential.  Graham  et                      
al.   calculate   a   massive   scalar   field   in   Minkowski   spacetime   that   obeys   the   wave   equation,   

  
.  ∂[ t

2 − ∂x
2 + m2 + λ δ( x( − 2

a) + δ x( + 2
a))]Φ (x, )t = 0 (22)   

  
Graham  et  al.  renormalize  by  identifying  divergent  contributions  to  the  Casimir  energy.  They  separate  the                 
expectation   value   of   the   energy   density   operator   into   three   parts,   

〈Ω 〉T ∣ ∣ 00
 ∣ 
∣ Ω Ren.

= 2
1 (ε )+ εF D + εCT , (23)  

where,   

,ε (x, , )a λ = ∫
∞

m
π
dt η(it,x)

√t m2− 2
(24)  

and,   

δ  εF D (x, , )a λ + εCT (x, , )a λ = λ
2π x(∣ ∣ − 2

a) − 2π
m λ2

∫
∞

m

dt
t√t m2− 2

e( 2 x t− ∣ − 2
a∣ + e 2 x+ t− ∣ 2

a∣ ) . (25)  

The   vacuum   expectation   value   of   the   energy   density   is   then   calculated   as,   
  

0 for 2, ε or 0≤ 2.  〈Ω 〉T ∣ ∣ 00
 ∣ 
∣ Ω Ren. = (− ∞ + λ

4π) + δ[ x( − 2
a) + δ x( + 2

a)] + { x∣ ∣ > a/  (λ, )a f x∣ ∣ < a/ (26)   
  

Results   of   Flanagan   
  

We  examine  the  results  of  Flanagan  [9]  to  calculate  energy  density  of  the  stress-energy  tensor  by  using  bounds.                    
Flanagan  analyses  the  behavior  of  the  renormalized  expected  stress-energy  tensor  in  two-dimensional  Minkowski               
spacetime  for  a  free  massless  scalar  field.  Flanagan  calculates  the  optimal  lower  bound  and  characterizes  its                  
respective  state.  Next,  Flanagan  calculates  the  lower  bound  for  an  arbitrary  smooth  positive  weighting  function.                 
Flanagan’s   definition   for   the   temporally   sampled   energy   density   for   fixed   spatial   position     is,  x0  

ω 〉 t,εT f[ ] = ∫
∞

∞−
〈 : ∣ ∣ T 00 : ∣ ∣ ω (x , )0 t f (t) d (27)  

where   is  the  stress-energy  operator  and   is  a  non-negative  normalized  sampling  function.  Flanagan  then   T μν       f (v)          
defines   the   spatially   sampled   energy   density   as,   

τ≥ dv.∫
∞

∞−
〈ρ〉Ren. (τ ) f (τ ) d − 1

24π ∫
∞

∞−
f (v)
f (v)2

(28)  

  
Results   of   Solomon   

  
In  2011,  Dan  Solomon  published  a  paper  [10]  claiming  that  his  model  would  violate  Flanagan’s  two-dimensional                  

worldline   quantum   inequality   [9],   

τ≥ dv,∫
∞

∞−
ρ (τ ) f (τ ) d − 1

24π ∫
∞

0
f (v)

f (v)∣ ′ ∣2 (29)  

where     is   the   energy   density,     is   a   sampling   function,   and     is   a   non-negative   normalized   sampling  ρ (τ ) f (τ ) f (v)  
function.     



Solomon  derived  that  the  negative  energy  between  the  two  delta-functions  splits  into  two  fluxes  of  negative                  
energy,  one  moving  left  and  one  moving  right  as  shown  in  Fig.  2.  For  an  observer  sitting  to  the  right  of  the  region  of                          
the   potential,   the   negative   energy-density   integrated   against   Solomon’s   test   function   results   in   the   inequality,   

,  2
η− ( 8t50

3a5
+ 2t30

5a3 ) ≥ − 5
3πt20

(30)  
which  indeed  violates  the  worldline  quantum  inequality  in  two  dimensions.  Solomon  uses  a  similar  technique  to                  
violate  the  spatial  quantum  inequality.  If  the  fluxes  shown  in  Figure  2  are  correct,  then  the  quantum  inequalities                    
would   fail,   demonstrating   a   mathematical   flaw   in   a   fundamental   property   of   quantum   physics.     

However,  turning  off  the  Mamaev-Trunov  potential  at  the  Cauchy  surface,  where  ,  causes  a  change  in  the             t = 0       
background  spacetime.  This  leads  to  particle  creation  that  causes  excitations  of  the  “standard”  modes  in  the  “OUT”                   
region  of  spacetime,  where .  Solomon  neglects  the  fact  that  shutting  off  the  potential  at  time   results  in     t > 0             t = 0    
particle  creation.  Not  incorporating  particle  creation  results  in  an  incorrect  value  for  the  energy  contribution  to  the                   
stress-energy   tensor,   eventually   leading   to   a   different   result.     

  

  
FIGURE   4.    A   two-dimensional   universe   with   a   timelike   geodesic   (red   line)   passing   through   a   region   of   space   encompassing   

negative   energy   density   (grey   region).     

  
FIGURE   5 .   Solomon's   Model.   

Previous   Work   on   Topic   
  

A  previous  paper  published  by  Pfenning  [13]  studies  a  massless,  quantized  scalar  field  in  the  presence  of  an                    
external,  time-dependent  Mamaev-Trunov  potential  for  a  single  delta-function  in  two-dimensional  cylinder             
spacetime,  illustrated  in  Figure  6.  As  in  this  project,  the  quantum  field  is  governed  by  the  Klein-Gordon-Fock  wave                    
equation.     

The   renormalized   expectation   value   of   the   stress-energy   tensor   for   the   IN   region   is,   



,  〈0 〉L T ∣ ∣ μν
IN  ∣ 

∣ 0L Ren = (− π
6L2 + L2

Β ∁− ) δμν (31)  
and   for   the   OUT   region   is,   

 〈0 〉L T ∣ ∣ μν
OUT  ∣ 

∣ 0L Ren
= λ

4π δ (t )[ (t )+ x + δ − x ] δμν + λ
4π δ (t )[ (t )+ x − δ − x ] 0 1 1 0 [ ] .  (32)  

Shutting   the   potential   off   at   time    t   =   0    creates   two   positive   energy   pulses,   shown   in   Figure   7.   The   pulses     
have   magnitude   ;   one   pulse   moves   in   the    -x    direction   and   the   other   in   the    +x    direction.  λ

4π  

  
FIGURE   6.    Pfenning's   model   of   cylinder   spacetime   in   the   presence   of   a   potential.   

  
  

  
FIGURE   7.    Findings   from   Dr.   Pfenning's   model   of   cylindrical   spacetime.   

CALCULATIONS   
  

This  paper  mathematically  demonstrates  that  there  exist  excitations  of  the  “standard”  modes  of  the  OUT  region                  
of  spacetime  when  the  potential  is  turned  off.  The  first  task  is  to  solve  two  initial  value  problems  for  Cauchy  data                       
(initial  data)  at  time   t  =  0.  Doing  so  involves  calculating  the  Fourier  decomposition  of  plane  waves  from  the  causal                      
past  (time   t  <  0 )  to  the  Cauchy  data  surface.  This  step  was  calculated  by  Mamaev  and  Trunov  in  their  1982  paper                        
[14].   The   antisymmetric   mode   solution   to   the   Klein-Gordon   equation   is,   

e in ,Φ−
k1 (x, )t = 1

√2πw
iwt− sin s (kx)  (33)  

and   the   symmetric   mode   solution   is,     
e cosΦ−

k2 (x, )t = 1
√2πw

iwt− (k )x∣ ∣ + δ . (34)  
We   calculate   the   Cauchy   data     as,     

in Φ−
k1 (x, )0 = 1

√2πw
sin s (kx)  (35)   

in ,∂ Φt
−
k1 (x, )0 = iw−

√2πw
sin s (kx)  (36)  



for   the   antisymmetric   modes   and,   
e cosΦ−

k2 (x, )t = 1
√2πw

iwt− (k )x∣ ∣ + δ (37)  

cos∂ Φt
−
k1 (x, )0 = iw−

√2πw
(k )x∣ ∣ + δ , (38)  

for   the   symmetric   modes.     
The  next  task  is  to  determine  the  Fourier  coefficients,   and  .  We  begin  by  taking  the  Fourier  transform           α (κ)   β (κ)         

of   the   functions   at   the   Cauchy   surface.   Our   calculated   value   for   the   Fourier   coefficients   is,     
( )(δ )  α (κ) = 1

i2√2 √w
ω + √ω

w (κ )− k − δ (κ )+ k (39)  

 β (κ) = 1
i2√2 (√w

ω − √ω
w) (δ )(κ )− k − δ (κ )+ k , (40)  

for   the   antisymmetric   modes   and,     
πcosδ[δ )] }  α(κ) = 1

2 π√2 (√ω
w + √w

ω) { (κ )− k + δ (κ )+ k − k κ2− 2
2ksinδ (41)  

πcosδ[δ )] },  β (κ) = 1
2 π√2 (√ω

w − √w
ω) { (κ )− k + δ (κ )+ k − k κ2− 2

2ksinδ (42)  

for  the  symmetric  modes.  Notice  that  the  Fourier  coefficients  for  the  symmetric  mode  are  more  complicated  than  the                    
Fourier   coefficients   for   the   antisymmetric   mode.     

We   next   calculate   the   continued   evolution   of   each   mode   for   t   >   0,   using   the   plain   wave   mode,   
e ,Ψ 

κ (x, )t = 1
√4πω

i(κx ωt)− (43)  
and   the   generic   solution,   

[α(κ)Ψ (κ)Ψ ]dκΨ 
 (x, )t = ∫

+∞

∞−

 
κ (x, )t − β  

κ (x, )t (44)  

where     and     are   the   Fourier   coefficients.   The   continued   evolution   of   each   mode   is,   α (κ) (κ)β   
 {cosδ os eΨ(x,t)

even = 1
√2πw

cos c (kx)  iwt− (45)  

sinδ [cos os in ]}− k
π ∫

∞

∞−

dκ
k κ2− 2 c (κx t)− ω  + i ω

w sin s (κx t)− ω  (46)  

 in e .Ψodd
(x,t) = 1

√2πw
sin s (kx)  iwt− (47)  

Next,  we  combine  the  Fourier  evolution  of  the  modes  and  renormalize  by  subtracting  the  same  expression  for   𝜆  =  0.                      
We   then   take   the   derivative   of   the   Wightman   function   to   find   the   unrenormalized   density,   

 ρ (x, , , )t x′ t = 2
1 ∂ ∂ ∂( t

′
t + ∂x

′
x)G x, , ,( t x′ t′) , (48)  

where     is   the   Wightman   function,   explained   in   the   ‘Wightman   Axioms’   section.    G x, , ,( t x′ t′)   
We  then  calculate  the  Fourier  transform  for  IN  region  plane  waves  at  the  Cauchy  surface  to  find  the  Fourier                     

coefficients   of   plane   waves   to   the   causal   future.   The   result   is,     

k[a ],ϕOUT (x, )t = ∫
∞

∞−
d (k) ψ (k, , )x t + b (k) ψ (k, , )x t (49)  

where   a(k)  and   b(k)  are  the  Fourier  coefficients  for  the  IN  region.  We  find  that  the  number  of  created  particles  is                       
proportional   to    .b(k)∣ ∣2  

We  next  calculate  the  mode  contributions  for  the  entirety  of  our  two-dimensional  spacetime,  and  find  that  the                   
antisymmetric   mode   contribution   is,     

k si e si e ,  G+ 
Anti x;( x′) = 1

2π ∫
∞

0
d 1

√w (kx)  iwt− 1
√w (kx )′  +iwt′ (50)  

and   the   symmetric   mode   contribution   is,   

(x, ) [cos os os os(κ ]e .  GSym
+ REN x′ = 1

2π ∫
∞

0
w
∂k (κ )x∣ ∣ + δ c κ( x ∣ ∣ 

′ ∣ 
∣ + δ) − c (κ )x∣ ∣ c x ∣ ∣ 

′ ∣ 
∣ 

iw t t− ( − ′) (51)  

Note  that  these  results  display  the  renormalized  positive  frequency  Wightman  function.  The  next  step  is  to  calculate                   
the  expectation  value  of  energy  density  in  the  OUT  region.  We  calculate  the  vacuum  expectation  value  of  the                    
stress-energy   tensor   to   be,   
  



[δ  < T ∣ ∣ tt
 ∣ 
∣ 0 >

ren
(x, )t = λ

8π x( + t − 2
a) + δ x( + t + 2

a) − 2
η Θ[ x( + t + 2

a) − Θ x( + t − 2
a)] + (52)  

 .  δ  [ λ
8π x( − t − 2

a) + δ x( − t + 2
a) − 2

η Θ[ x( − t + 2
a) − Θ x( − t − 2

a)]  
Choosing  a  stationary  geodesic  at   which  is  either  to  the  right  or  the  left  of  the  potential,  we  determine  that  the       x0                  
energy   density   is,     

ρren (t) = ⟨0 ⟩T ∣ ∣ tt
 ∣ 
∣ 0 ren

(x , )0 t . (53)  
The  left-hand  side  of  the  quantum  inequality  comes  from  the  integration  of  this  expression  against  Solomon’s  test                   
function,   i.e.   

HS t,L = ∫
∞

0
ρren (t) f (t) d (54)  

where,     
t (t ) .f (t) = t50

30 2 − t0
2 (55)  

  
Our   resulting   inequality   is,     

.  − 5
3πt20

λ
4πa ( 10t50

27a5
+ 4t30

25a3 ) ≥ − 5
3πt20

(56)  
This  result,  unlike  Solomon’s,  is  always  true,  as  the  left-hand  side  is  positive  for  all  values  of   and  .  The  positive                   a   t0    
energy  pulse  on  the  leading  and  trailing  edges  of  the  traveling  negative-energy  regions  overwhelms  the  negative                  
energy  contributions  in  the  quantum  inequality.  Therefore,  particle  creation  and  the  positive  energy  associated  with                 
it   play   a   dominant   role   in   the   dynamical   model   and   the   spatial   quantum   inequality   is   not   violated.   
  

CONCLUSION   
  

Classical  energy  conditions  are  mathematical  constraints  on  energy  conditions  in  space  and  time.  In  classical                 
physics,  the  energy  conditions  constrain  energy  density  to  be  nonnegative  because  mass  is  positive  in  value.  In                   
quantum  physics,  however,  energy  density  can  be  negative.  The  replacements  for  classical  energy  conditions,                
quantum  inequalities  locally  constrain  the  magnitude  and  extent  of  negative  energy  density  in  spacetime.  Mamaev                 
and  Trunov  generated  a  method  to  calculate  the  Casimir  effect,  a  physical  force  arising  due  to  the  presence  of  a                      
quantized  field,  by  calculating  the  vacuum  expectation  value  of  the  stress-energy  tensor  for  a  relativistic  quantum                  
field  theory  and  using  a  double  delta  function  potential.  A  paper  by  Dan  Solomon  claims  that  this  violates  the  spatial                      
energy  condition;  however,  Solomon  neglected  the  energy  contribution  of  particle  creation  to  the  stress-energy                
tensor.  In  this  paper,  we  include  the  effects  of  particles  created  after  shutting  off  the  potential  at  the  Cauchy  surface                      
and  re-calculate  the  energy  contributions  to  the  stress-energy  tensor.  We  do  so  in  a  two-dimensional  Minkowski                  
spacetime  with  an  external,  time-dependent  Mamaev-Trunov  potential.  We  find  that  the  spatial  quantum  inequality                
is   not   violated.     
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