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Abstract:  Noether’s Theorem, which relates continuous transformations to conservation laws, is applied to the classical 
wave equation and the Schrödinger equation.  Transformations are derived that lead to invariances and conservation laws. 

INTRODUCTION 

Through the two versions of the Euler-Lagrange equation, Lagrangian dynamics features distinct conservation 
laws, one for canonical momenta and another for the Hamiltonian.  More generally, whenever a functional is both 
extremal and invariant under a continuous transformation, Noether’s theorem1 offers an elegant conservation law 
expressed as a superposition of these quantities.  The applicability of the theorem extends across physics, from 
classical mechanics to field theories.  Since the classical wave equation, 

 
   

 ∇ 𝜓 −  = 0  (1) 

 
and the Schrödinger equation  

 

 −
ℏ

∇ 𝜓 +  𝑈𝜓 =  −
ℏ

 (2) 

 
describe the evolution of their respective wave function ψ(r,t), we seek transformations that leave their functionals 
invariant in order to find conservation laws.  Let us review Noether’s theorem. 

FUNCTIONALS, EXTREMALS, AND INVARIANCE 

Functionals are mappings that take a function as input and produce a real number as output.  Let us begin with the 
type of functional typically encountered in physics, definite integrals of the form 

 
  

 Γ =  ∫ 𝐿[𝑞 (𝑡), �̇� (𝑡), 𝑡]𝑑𝑡 (3) 
 

where μ = 1,2,…,n, 𝑞 ̇ ≡   , and L denotes the Lagrangian.  The primary problem in the calculus of variations is to 

find the set of generalized coordinates 𝑞 (𝑡) that make Γ an extremal.  Applications include Fermat’s Principle and 



Hamilton’s Principle.  As is known2, the required 𝑞 (𝑡) satisfy the Euler-Lagrange equation (ELE), which can be 
written in two forms: either 
 
   
  

 =  �̇�                                 (4) 

 
where 𝑝 denotes the momentum canonically conjugate to qμ, 
 

 𝑝 ≡
̇

 ; (5) 

or alternatively as 
 

 =  −�̇�,                    (6) 

 
where H denotes the Hamiltonian, defined by the Legendre transformation 
 
 𝐻 𝑞 , 𝑝 , 𝑡 ≡ �̇� 𝑝 −  𝐿(𝑞 , �̇� , 𝑡)  (7) 

 
(sum repeated indices).  These two versions of the ELE offer separate conservation laws:  From Eq. (4), pμ is conserved 
if and only if L contains no explicit dependence on 𝑞 ; and by Eq. (6), H is conserved if and only if L does not depend 
explicitly on t. 

As a separate issue, consider a continuously parameterized transformation of the independent variable, 𝑡 → 𝑡′, and 
of the dependent variables, 𝑞 →  𝑞′ : 

 
 𝑡 = 𝑇(𝑡, 𝑞 , ε)  (8) 

 
 𝑞′ = 𝑄 (𝑡, 𝑞 , ε),  (9) 

 
where ε is the parameter.  A Taylor series expansion of T and Qμ about ε = 0 yields 
 
 𝑡 = 𝑡 + 𝜀𝜏(𝑡, 𝑞 ) + 𝑂(𝜀 ) + ⋯ (10) 

 
 𝑞′ = 𝑞 + ε𝜁 (𝑡, 𝑞 ) + 𝑂(ε ) + ⋯ (11) 

 
where τ = dT/dε|0 and 𝜁  = dQμ/dε|0 are the transformation “generators.”  The functional Γ is invariant if and only if 
the difference between the functional in the transformed variables, and the functional in the original variables becomes 
smaller than ε as ε → 0.  More precisely, Γ is said to be invariant if and only if 
 

 Γ′ − Γ ≡  𝐿 𝑞 (𝑡 ), , 𝑡 𝑑𝑡 − 𝐿 𝑞 (𝑡),
( )

, 𝑡 𝑑𝑡   ~  𝜀  (12) 

 
as ε → 0, where s > 1.  Under the change of variable dt' = (dt'/dt) dt in the first integral, Γ′ and Γ can be brought under 
one integral over dt, and the invariance definition expressed in terms of the integrand as 
 

 𝐿 𝑞 (𝑡 ), , 𝑡  −  𝐿 𝑞 (𝑡),
( )

, 𝑡  ~ ε . (13) 

 
Testing for invariance with this definition can be laborious.  However, upon differentiating Eq. (13) with respect 

to ε then setting ε = 0, the Rund-Trautman identity (RTI) results3,4, 
 

 
ℒ

𝜁 +  𝑝 𝜁 +  
ℒ

𝜏 −  𝐻�̇� = 0 (14) 

or equivalently 
 



 −  �̇� (�̇� 𝜏 −  𝜁 )  =   𝑝 𝜁 − 𝐻𝜏 ,  (15) 

 
which is necessary and sufficient for invariance.  The RTI generalizes to r parameters 𝜀  for k = 1, 2, … r, to 
accommodate combined origin displacements,  rotations of axes, and boosts, where to first order in ε, 𝑡 = 𝑡 +  𝜀 𝜏  
and 𝑞′ =  𝑞 +  𝜀 𝜁  (however, we need only r = 1 here). 

If the functional is invariant and extremal, the RTI and ELE hold simultaneously.  Substituting the ELE (Eq. 4) 
into the RTI (Eq. 15) yields the conservation law 

 
 𝑝 𝜁 − 𝐻𝜏 = 𝑐𝑜𝑛𝑠𝑡. (16) 

 
Noether’s theorem produces not only the familiar conservation laws of energy, linear momentum, and angular 

momentum, but also reveals conservation laws for systems that, at first glance, appear to have none.  For instance, the 

Lagrangian 𝐿(𝑥, �̇�, 𝑡) = 𝑚�̇� −  𝑘𝑥 𝑒 /  produces the equation of motion 𝑚�̈� + 𝑏�̇� + 𝑘𝑥 = 0, a damped 

oscillator, which conserves neither energy nor momentum.  But a combined time translation t’ = t + ε and spatial 

rescaling 𝑥 = 𝑥 1 −  𝜀  satisfies the RTI, leading by Eq. (16) to 

 

 𝑚�̇� +  𝑘𝑥 + 𝑏�̇�𝑥 𝑒 / = 𝑐𝑜𝑛𝑠𝑡. (17) 

 
Given a Lagrangian, transformations leading to conservation laws can be found by imposing the RTI and solving 

for the generators.  One writes the RTI as a polynomial in coordinate velocity (including using the chain rule for time 
derivatives of  τ(qμ,t) and ζ(qμ,t)).  Since the RTI must hold whatever the velocity, the coefficients of the distinct 
powers of velocity are set to zero, producing “Killing equations” to be solved for the generators.   

Noether’s theorem may be extended to fields, which are functions of spacetime coordinates.  For our purposes it 
is sufficient to consider a scalar field φ = φ(qμ), where the qμ denote n spacetime coordinates.  The field’s dynamics 
are described through a functional defined by a multiple integral over a domain ℛ, 

 

 Γ =  ∫ ℒ 𝑑 𝑞
ℛ

     (18) 
 

where the Lagrangian density ℒ is a function of φ(qμ), its first derivatives  ≡ φμ, and the generalized coordinates 

𝑞 . Upon making the functional of Eq. (18) an extremal, the ELE generalizes from Eq. (4) into4 
 

 
ℒ

=  𝜕 𝑝  (19) 

where 

 𝑝  ≡  
ℒ

                                                         (20) 

 
is a field canonical momentum component.  The ELE in terms of a Hamiltonian density generalizes from Eq. (6) to 
 
 𝜕 ℒ =  −𝜕 ℋ                                                   (21) 

 
where  
   ℋ  =  𝜑 𝑝 −  𝛿 ℒ    (22) 

 
is a Hamiltonian tensor component.  Let us consider an infinitesimal transformation 
 
 𝑞′ =  𝑞 +  𝜀𝜏 + ⋯   (23) 

 
    𝜑′ =  𝜑 +  𝜀𝜁 + ⋯.  (24) 

 
The field-theory version of the RTI becomes a generalization of Eq. (14),4 

 



 
ℒ

𝜁 +  
ℒ

𝜁 +  
ℒ

𝜏 −  ℋ   𝜏   = 0  (25)  

 
where 𝜁 =  𝜕𝜁/𝜕𝑞  and 𝜏  =  𝜕𝜏 /𝜕𝑞 .  Thanks to the product rule for derivatives, Eq. (25) may be alternatively 
written as 

  
ℒ

 −  𝜕 𝑝 𝜑  𝜏 −  𝜁  =  𝜕 [ 𝑝 𝜁 −  ℋ   𝜏 ],     (26) 

 
a generalization of Eq. (15).  When the functional is invariant and extremal, the ELE and RTI hold simultaneously 
and Eq. (26) becomes an equation of continuity, 
 
  𝜕 𝑗 = 0 (27) 

where 
 
 𝑗 =  𝑝 𝜁 −  ℋ   𝜏 .            (28) 

 
Integrating Eq. (27) over the x-axis yields, in the case of two-dimensional spacetime (t,x), 
 

 
 

∫ (𝑝 𝜁 −  ℋ   𝜏 )𝑑𝑥 + [𝑝 𝜁 −  ℋ   𝜏 ] | = 0.  (29) 

 
Assuming the field vanishes at spatial infinity, Eq. (29) becomes 
 

 ∫ (𝑝 𝜁 − ℋ   𝜏 ) 𝑑𝑥 =  𝑐𝑜𝑛𝑠𝑡.  (30) 
 

Examples in four-dimensional spacetime include global gauge transformations in electrodynamics, leading to local 
charge conservation.  In field theory, as in particle mechanics, given a Lagrangian density one may impose the RTI to 
find generators that make the functional extremal, producing conservation laws expressed as equations of continuity. 

Towards this end, one writes the canonical momenta and the Hamiltonian in terms of “velocities,” derivatives of 
fields with respect to spacetime coordinates.  As a polynomial in “velocity” components, the RTI must hold whatever 
the “velocities.”  The coefficients of distinct powers of “velocity” are set to zero, producing Killing equations to be 
solved for the generators.  We apply this program to the classical inhomogeneous linear wave equation and the time-
dependent Schrödinger equation. 

Noether’s Theorem and the Linear Wave Equation 

Consider the vertical component of F = ma applied to an increment of guitar string having mass dm, linear density 
μ, and tightened to tension T.  For a segment of string of length ds displaced a distance y (the field φ) from its 
undisturbed position (the x axis), and with a damping force proportional to vertical velocity, Newton’s second law 
gives 

 𝑇 ∆(sin 𝜃)  −  𝜂 𝑑𝑚  −  𝑔𝑑𝑚 = 𝑑𝑚      (31) 

 
where 𝑔 denotes the gravitational field, η a damping coefficient, and θ the segment’s inclination above the horizontal 
at its endpoints.  Using dm = μds, and noting that for small angles ds ≈ dx and sinθ ≈ tanθ = ∂y/∂x, in the limit as dx 
→ 0, Eq. (31) becomes a linear inhomogeneous wave equation, 
   

 +   =  +  𝛾 (32) 

 
where  𝑣 =  𝑇/𝜇  is the wave’s translational velocity down the x axis, 𝜆 =  𝜂/𝑣, and  𝛾 = 𝑔/𝑣 .  Letting 𝑠 = 𝑣𝑡, 
the Lagrangian density  
 

 ℒ = ( �̇� −  𝑦 −  𝑦𝛾)𝑒  (33) 

 

(where �̇�  ≡ ≡  𝑦  and 𝑦′ ≡ ≡  𝑦 ), when substituted into Eq. (19), gives Eq. (32). 



 
It is instructive to examine the physical interpretations of the Lagrangian density terms.  Consider an increment of 

string of length ds ≈ dx, and recall 𝜇 = 𝑇/𝑣  and 𝛾 = 𝑔/𝑣 .  The increment’s kinetic energy is 
 

 𝑑𝐾 =  𝑑𝑚 = =  𝑇 𝑑𝑥;  (34) 

 
its gravitational potential energy is 
 
 𝑑𝑈 = (𝑑𝑚)𝑔𝑦 =  𝜇(𝑑𝑥)𝑔𝑦 =  𝑇𝛾𝑦 𝑑𝑥;  (35) 

 
and for the elastic potential energy, with “spring constant” T sinθ/Δy, we have 
 

 𝑑𝑈 =  (Δ𝑦) =  𝑇 𝑑𝑥.  (36) 

 
Now the Lagrangian density is recognized physically as 
 

 ℒ =
 

 𝐾 − 𝑈 −  𝑈 . (37) 

The canonical momenta are 
 

 𝑝 ≡
ℒ

̇
=  𝑦 𝑒    (38) 

and 
 

 𝑝 ≡
ℒ

=  −𝑦 𝑒 . (39) 

 
Eq.  (22) gives the Hamiltonian tensor components.  Formally, they are functions of canonical momenta, but to extract 
the Killing equations from the RTI we must write the tensor components in terms of the “velocities,” and thereby 
obtain 
 

   ℋ  =  
  ℋ    ℋ  

  ℋ    ℋ  

=  𝑒
𝜉 + 𝛾𝑦 −𝑦 𝑦
−𝑦 𝑦 −𝜉 +  𝛾𝑦

 (40) 

 

where 𝜉 =  𝑦 +  𝑦 .  Under an infinitesimal transformation 

 
 𝑡 =  𝑡 +  𝜀𝜏 , (41) 

 
 𝑥 =  𝑥 +  𝜀𝜏 , (42) 

 
 𝑦 = 𝑦 +  𝜀𝜁, (43) 

and imposing the RTI, Eq. (25) becomes  
 

 −𝛾[𝜁 + 𝑦(𝜆𝜏 + 𝜏 + 𝜏 )] + 𝑦 𝜁 − 𝑦 𝜁 + (𝜆𝜏 − 𝜏   + 𝜏   ) 

      + (−𝜆𝜏 − 𝜏   + 𝜏   ) + 𝑦 𝑦 (𝜏   + 𝜏   )    =  0.  (44) 

 
Since this expression must hold whatever y0 and y1 may be, we set to zero the coefficients of distinct derivatives of y, 
producing the Killing equations: 
 

no-derivative coefficient: 𝛾[𝜁 + 𝑦(𝜆𝜏 +  𝜏   + 𝜏   )] = 0 (K1) 
 
yo coefficient:    𝜁 = 0    (K2) 
 



y1:     𝜁 = 0    (K3) 
 
yo

2:    𝜆𝜏 =  𝜏   −  𝜏      (K4) 
 
y1

2:     −𝜆𝜏 =  𝜏   −  𝜏     (K5) 
 
yoy1:     𝜏 =  −𝜏 .   (K6) 

 

Eqs. (K2-K3) show that, at most, 𝜁 = 𝜁(𝑦).  Eq. (K6) suggests a separation of variables, 𝜏 =  −𝜏 =  𝜅 where κ = 
const.  This integrates to 
 𝜏 =  𝜅𝑥 + 𝑓(𝑠) (45) 

 
 𝜏 =  −𝜅𝑠 + 𝑔(𝑥)  (46) 

 
where f and g are arbitrary functions.  Comparing Eqs. (K4) and (K5) gives λτ0 = 0, and thus 𝜏 =  𝜏 , which leads   

to another separation of variables, =  = 𝐶, where C = const., and therefore 

 
 𝜏 =  𝐶𝑠 + 𝜅𝑥 + 𝑎   (47) 

 
   𝜏 =  −𝜅𝑠 +  𝐶𝑥 + 𝑏 (48) 

 
where a and b are integration constants. 

 Now Eq. (K1) becomes  
 

 𝛾(𝜁 + 2𝐶𝑦) = 0 (49) 
 

which presents alternatives depending on whether γ vanishes. 
 

(a) If  γ ≠ 0, then  𝜁 =  −2𝐶𝑦, and using Eqs. (K2-K3),  
 

 𝜁̇ =  𝜁 +  𝜁 �̇� = 0 =  −2𝐶�̇�,  (50) 
 
which means C = 0 and thus ζ = 0, which also takes C out of Eqs. (47-48). 

  
(b) If γ = 0 then Eq. (49) puts no further constraint on  𝜁, although Eqs. (K2-K3) still hold; together these allow 

𝜁 = 𝑐𝑜𝑛𝑠𝑡.  ≡ 𝜁  with nonzero C.  
Among the possibilities of cases (a) and (b), we consider the transformations 
 

 𝑡 =  𝑡 +  𝜀(𝛿 𝐶𝑠 +  𝜅𝑥 +  𝑎)  (51) 
 

 𝑥 =  𝑥 +  𝜀(𝛿 𝐶𝑥 − 𝜅𝑠 +  𝑏)  (52) 
 

 𝑦 =  𝑦 +  𝜀𝜁 𝛿   (53) 
 

where 𝛿  = 0 if γ ≠ 0, and 𝛿  = 1 if γ = 0.  When the functional is both extremal and invariant under Eqs. (51)-(53), 
Eq. (27) gives 
 
 𝜕 (𝑝 𝜁 −  ℋ    𝜏 ) = 0 (54) 

and Eq. (30) implies 
 

 ∫ (𝑝 𝜁 − ℋ   𝜏 ) 𝑑𝑥 =  𝑐𝑜𝑛𝑠𝑡.,  (55) 
which in our case becomes 
 



 ∫ [𝑦 𝑒 𝜁 𝛿 − (𝜉 +  𝛾𝑦)(𝐶𝑠 + 𝜅𝑥 +  𝑎) + 𝑦 𝑦 (𝐶𝑥 −  𝜅𝑠 + 𝑏)]𝑑𝑥 = 𝑐𝑜𝑛𝑠𝑡.    (56) 
 

Consider a time translation, where a  ≠ 0 but C, κ, b and  𝜁  vanish.  Eq. (56) reduces to  
 

 ∫ (𝜉 +  𝛾𝑦) 𝑑𝑥 = 𝑐𝑜𝑛𝑠𝑡.    (57) 
 

Recognizing the integrand as mechanical energy density, invariance under a time translation implies energy 
conservation.   

Under a vertical displacement of the wave, a = b = 0 and C = κ = 0 but 𝜁  ≠ 0 (which implies γ = 0).  Eq. (56) 
gives 

 

  𝑒 ∫ 𝑦 𝑑𝑥 = 𝑐𝑜𝑛𝑠𝑡.     (57) 
 

Multiplying by the mass linear density μ, Eq. (57) becomes 
 

 ∫ 𝑦 𝑑𝑚 = 𝑐𝑜𝑛𝑠𝑡.× 𝑒 .     (58) 
 

The integral describes the total vertical momentum as the string vibrates in the y-direction. If λ ≠ 0 the vertical 
momentum damps with time, analogous to Eq. (17).  But if λ = 0 then Eq. (57) becomes  
 

 ∫ 𝑦 𝑑𝑚 = 𝑐𝑜𝑛𝑠𝑡.     (59) 
 

which says that, with negligible gravity and no damping, the vertical momentum carried by the wave on the entire 
string is conserved.  Of course, due to the elastic restoring force, the instantaneous momentum of any increment of 
string is not conserved, but for any bit of string moving upwards in one place, another bit of string elsewhere at the 
same time moves downward with the same speed, allowing the y-momentum of the entire string to remain constant. 

Noether’s theorem and the Schrödinger equation 

The Schrödinger equation for a particle of mass m interacting with a potential energy U(x,t) is   
  

 −
ℏ

+ 𝑈𝜓 =  −
ℏ

 (60) 

  
where 𝜓 = 𝜓(𝑡, 𝑥) and ℏ is the reduced Planck’s constant.   The Euler-Lagrange equation  
 

 
ℒ

∗ =  𝜕
ℒ

∗   (62) 

 
(sum repeated indices with μ = 0, 1) coincides with Eq. (2) if the Lagrangian density ℒ has the form  
 

  ℒ(𝜓, 𝜓∗, 𝜓 , 𝜓∗ , 𝜓 , 𝜓∗, 𝑡, 𝑥) = −
ℏ

𝜓∗𝜓 −  
ℏ

(𝜓∗𝜓 −  𝜓∗𝜓) −  𝜓∗𝑈𝜓   (63) 

 
where x0 = t, x1 = x,  ∂ψ/∂xμ = ψμ and * indicates the complex conjugate (cc).  For brevity let 𝛼 = −ℏ /2𝑚 and  𝛽 =
 ℏ𝑖/2. From Eq. (6) the canonical momenta pμ are:  
 

 𝑝 =  
ℒ

=  𝛽𝜓∗,      𝑝∗ =  
ℒ

∗ = −𝛽𝜓    (64) 

 

 𝑝 =  
ℒ

 = 𝛼𝜓∗,         𝑝∗ =  
ℒ

∗  =  𝛼𝜓.  (65) 

 
From Eq. (22) the Hamiltonian tensor components are: 
 



 ℋ  =
ℋ  ℋ  

ℋ  ℋ  

  = 
[−𝛼𝜓∗𝜓 + 𝜓∗𝑈𝜓] 𝛽(𝜓∗𝜓 −  𝜓𝜓∗)

𝛼(𝜓∗𝜓 + 𝜓 𝜓∗) [𝛼𝜓∗𝜓 − 𝛽(𝜓∗𝜓 −  𝜓∗𝜓) +  𝜓∗𝑈𝜓]
 . (66) 

 
 Consider an infinitesimal transformation parameterized by ε: 
 

 𝑡 = 𝑡 +  𝜀𝜏     (67) 
 

 𝑥′ = 𝑥 +  𝜀𝜏         (68) 
 

 𝜓′ = 𝜓 +  𝜀𝜁 (69) 
 

 𝜓∗′ = 𝜓∗ +  𝜀𝜁∗         (70) 
 

with generators 𝜏 =  𝜏 (𝑡, 𝑥), 𝜁 =  𝜁(𝑡, 𝑥),   𝜁∗ =  𝜁∗(𝑡, 𝑥).  The system is invariant if and only if the invariance 
identity holds, which in this instance requires: 
 

  
ℒ

𝜁 +
ℒ

∗ 𝜁∗ + 𝑝 𝜕 𝜁 + 𝑝∗ 𝜕 𝜁∗ +  𝜕 ℒ 𝜏 − ℋ  𝜕 𝜏  = 0.  (71) 

 
If the functional is invariant and extremal, Noether’s theorem yields an equation of continuity, Eq. (27).   

We impose the invariance identity and solve for generators.  Since the invariance identity must hold whatever 
𝜓(𝑡, 𝑥) and 𝜓∗(𝑡, 𝑥) happen to be, the coefficients of their distinct derivatives are set to zero, to produce the Killing 
equations.  With primes denoting 𝜕/𝜕𝑥 and overdots denoting 𝜕/𝜕𝑡, they are: 

 
no derivative coefficient:  (𝜓∗𝜁 +  𝜓𝜁∗)𝑈 − 𝜓∗𝜁̇𝛽 +  𝜓𝜁∗̇𝛽∗ + 𝜓∗𝜓 𝜕 (𝑈𝜏 )  (Ka) 

 
𝜓  𝑎𝑛𝑑 𝑐𝑐:                          𝛼𝜁 +  𝛽�̇� 𝜓 = 0        (Kb) 
 
𝜓  𝑎𝑛𝑑 𝑐𝑐:   𝜁 +  𝜏′ 𝜓 = 0      (Kc) 
 
𝜓∗𝜓 :     𝜏′ = 0     (Kd) 
 
𝜓∗𝜓 :                 �̇� =  𝜏′     (Ke). 

 
Eq. (Kd) tells us 𝜏 =  𝜏 (𝑡), which turns (Ke) into 
 

 =  .   (72) 

 
Since, in general, 𝜏 =  𝜏 (𝑡, 𝑥), a separation constant A is not the most general solution to Eq. (70).  But this special 
case in Eq. (72) gives 
 
 𝜏 = 𝐴𝑡 +  𝑎  (73) 

 
 𝜏 = 𝐴𝑥 + 𝑔(𝑡). (74) 

 
Placing Eq. (74) into (Kc) gives 
 
 𝜁 =  −𝐴𝜓, (75) 

and putting Eq. (74) into (Kb) yields 
 

 
ℏ

𝜁 =  𝑖�̇�𝜓.  (76) 

 

Consistency between Eqs. (75) and (76) puts a constraint on ψ of the form 𝜓 =  −
̇

ℏ
 𝜓, so that 

 



 𝜓 ~ 𝑒 ̇ /ℏ . (77) 
 

This suggests a Fourier component of a wave function corresponding to a particle moving along the x-axis, for which 
 

 𝜓(𝑡, 𝑥) =  ∫ 𝜙(𝑘)𝑒 (  ± )  . (78) 

 

Therefore, by comparing Eqs. (77) and (78), we set 𝑘 =  −
̇

ℏ
, which gives 

 

 𝑔(𝑡) =  −
ℏ

𝐴𝑡 + 𝑏 (79) 

 
where b is an integration constant.  We notice that ℏ𝑘 is the particle’s momentum.  In summary, this solution of the 
Killing equations is 
 
 𝜏 = 𝐴𝑡 +  𝑎  (80) 

 

 𝜏 = 𝐴 𝑥 −  
ℏ

𝑡 + 𝑏 (81) 

 
 𝜁 =  −𝐴𝜓.   (82) 

 
The remaining Killing equation (Ka) constrains the potential energy for conservation laws to follow. With Eqs. (80)-
(82), it requires   
 

 2𝐴(𝜓∗𝜓)𝑈 − 𝐴
ℏ

𝜓∗�̇� −  �̇�∗𝜓 + 𝜓∗𝜓 [𝜕 (𝑈𝜏 ) +  𝜕 (𝑈𝜏 )] = 0.  (83) 

 
But even for a free particle for which U = 0, the middle term will not vanish unless A = 0.  Henceforth we set A = 0, 
and thus the conserved quantity of Eq. (30) becomes 
 
 ∫ [ℋ  𝜏 +  ℋ  𝜏 ]𝑑𝑥 = 𝑐𝑜𝑛𝑠𝑡. (84) 

which is 
 

 ∫ −
ℏ

𝜓∗𝜓 + 𝜓∗𝑈𝜓 𝜏  −
ℏ

(𝜓∗𝜓 −  𝜓𝜓∗)𝜏 𝑑𝑥 = 𝑐𝑜𝑛𝑠𝑡.  (85) 

 
An integration by parts on the first term, 𝜕 (𝜓∗𝜓 ) =  𝜓∗𝜓 +  𝜓∗𝜓 , plus the requirement that the wave function 
vanishes at infinity, turns Eq. (85) into 
 

 ∫ 𝜓∗ −
ℏ

+ 𝑈𝜓 𝜏  −
ℏ

(𝜓∗𝜓 −  𝜓𝜓∗)𝜏 𝑑𝑥 = 𝑐𝑜𝑛𝑠𝑡. (86) 

 
With A = 0 the transformations of Eqs. (80)-(82) describe only time and space translations: 
 
  𝑡 = 𝑡 +  𝜀𝑎    (87) 

 
 𝑥 = 𝑥 +  𝜀𝑏 .   (88) 

 
 𝜓 =  𝜓  (89) 

 
and the constraint of Eq. (83), when integrated over all space, reduces to  
 

 𝑎 〈 〉 + 𝑏 〈 〉 = 𝑐𝑜𝑛𝑠𝑡.     (90) 

 
where the brackets denote expectation values.  Under a time translation, for which 𝑎 ≠ 0  but b = 0, if 〈𝜕𝑈/𝜕𝑡〉 = 0, 
from Eq. (86) the conservation of the energy results: 



 

 ∫ 𝜓∗ −
ℏ

+ 𝑈𝜓 𝑑𝑥 = + 𝑈 =  𝑐𝑜𝑛𝑠𝑡.     (91) 

 
Under a spatial translation with 𝑏 ≠ 0 but a = 0, if 〈𝜕𝑈/𝜕𝑥〉 = 0 the conservation of probability results5: 
 

 
ℏ

 ∫ (𝜓∗𝜓 −  𝜓𝜓∗) 𝑑𝑥 = 𝑐𝑜𝑛𝑠𝑡.  (92) 

Comment 

These results for the linear wave equation and the Schrödinger equation tell us little about their conservation laws 
that was not already known from other perspectives.  However, our exercise illustrates the powerful generality of 
Noether’s theorem, and provides consistency checks on those other perspectives. 
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