# An Even Simpler "Truly Elementary" Proof of Bertrand's Theorem

Jared Galbraith a) and Jacob Williams b)

Southern Nazarene University
6729 NW 39th Expressway, Bethany, OK 73008

a)Corresponding author: jargalbrai@gmail.com
b) jacwilli289@gmail.com

**Abstract:** We present a further simplified derivation of a "truly elementary" proof of Bertrand's theorem, which predicts the exponents in central power-law potentials that produce closed orbits.

#### INTRODUCTION

Bertrand's theorem<sup>1</sup> proves that for a central force power-law potential energy  $V(r) \sim r^n$ , closed orbits exist only for n = -1 and +2. An elegant "truly elementary" proof of the theorem was recently published by S. Chin.<sup>2</sup> Here we streamline the theorem's proof further, making it even more elementary.

We review criteria for an orbit to be closed, outline a strategy for determining which values of n give a closed orbit, then consider cases of negative and positive n. To make this note self-contained, we develop an argument along the lines of Chin's, but indicate where we introduce an additional simplification. For comparison, Chin's argument we replace is presented in the Appendix.

# **CLOSED ORBITS: CRITERIA, STRATEGY, AND CASES**

#### **Closed Orbit Criteria and Strategy**

In central force motion, the force and potential energy depend only on the distance between the force center and the particle, suggesting the use of spherical coordinates  $(r, \theta, \phi)$ . Because angular momentum is conserved, the orbit may be mapped in the  $\theta = \pi/2$  plane, and the trajectory specified as  $r = r(\phi)$ . In a closed orbit, let  $r_2$  be the maximum and  $r_1$  be the minimum values of r. The angle  $\phi_A$  between them, the *apsidal angle*, is one-half the spatial angular period for the radial oscillation  $r_2 \rightarrow r_1 \rightarrow r_2$  (Fig. 1).



**FIGURE 1.** For the curve (red) the apsidal angle  $\varphi A$  is  $\pi/4$ .

For an orbit to close in an integral number M revolutions so that  $r(\varphi + 2\pi M) = r(\varphi)$ , an integral number N periods of the radial oscillation must fit into  $2\pi M$ . Thus  $2\varphi_A N = 2\pi M$ , or

$$\varphi_A = \pi/R \tag{1}$$

where R is a rational number.

An effective way to predict a particle's orbit in a central potential employs the conservation of energy and angular momentum.<sup>3</sup> Since the particle of reduced mass *m* moves with velocity

$$\mathbf{v} = \dot{r}\hat{\mathbf{r}} + (r\dot{\varphi})\hat{\boldsymbol{\varphi}} \tag{2}$$

(overdots denote time derivatives), the angular momentum is

$$\mathbf{L} = (mr^2 \dot{\varphi})\hat{\mathbf{z}}. \tag{3}$$

Using Eqs. (2) and (3), the mechanical energy E is

$$E = \frac{1}{2}m\dot{r}^2 + \frac{L^2}{2mr^2} + V(r). \tag{4}$$

The  $L^2/2mr^2$  contribution to the kinetic energy behaves mathematically like a repulsive  $1/r^2$  potential energy; it is sometimes called the "centrifugal potential." Together with the potential energy V(r) they make the *effective potential*  $V_e(r)$ :

$$V_e(r) \equiv \frac{L^2}{2mr^2} + V(r). \tag{5}$$

Solving Eq. (5) for  $\dot{r} = \frac{dr}{d\varphi}\dot{\varphi}$ , again using Eq. (3) and introducing

$$u = 1/r, (6)$$

Eq. (5) yields an integration for  $\varphi = \varphi(r)$ ,

$$\varphi(r) = \pm \sqrt{\beta} \int \frac{du}{\sqrt{E - \beta u^2 - V(u^{-1})}}$$
 (7)

where  $\beta \equiv L^2/2m$ . After integrating,  $\varphi = \varphi(r)$  is inverted to obtain  $r = r(\varphi)$ , and closure (or not) of the orbit may be judged directly by seeing whether  $r(\varphi + 2\pi M) = r(\varphi)$  for integer M. For n = -1 (planetary orbits or Rutherford scattering), inverting  $\varphi(r)$  produces a conic section  $\alpha/r = 1 + \epsilon \cos \varphi$ . For n = 2 (mass on a radial spring), inverting  $\varphi(r)$  gives  $(\alpha/r)^2 = 1 - \sin(2\varphi)$ . Clearly, an elegant proof of Bertrand's theorem would be straightforward if the antiderivative of the integrand in Eq. (7) presented itself as a function of n for any potential of the form  $V(u^{-1}) \sim u^{-n}$ . Unfortunately,  $\varphi(r)$  as a function of arbitrary n is not forthcoming. Another approach must be attempted.

Solving Eq. (4) for  $\dot{r} = \frac{dr}{d\varphi}\dot{\varphi}$  and using Eq. (3) to replace angular velocity with angular momentum, so that  $\frac{dr}{d\varphi}\dot{\varphi} = \frac{dr}{d\varphi}\frac{L}{mr^2}$ , leads to

$$\frac{L^2}{2mr^4} \left(\frac{dr}{d\varphi}\right)^2 = E - V_e(r). \tag{8}$$

Recalling u = 1/r and, following Chin, defining

$$L^2/m \equiv m^*, \tag{9}$$

Eq. (8) may be recast as

$$E = \frac{1}{2}m^* \left(\frac{du}{d\omega}\right)^2 + \frac{1}{2}m^*u^2 + V(u^{-1}). \tag{10}$$

The last two terms are the effective potential in terms of u,

$$V_e(r) = V_e(u^{-1}) \equiv \frac{1}{2}m^*u^2 + V(u^{-1}).$$
 (11)

In *u*-space Eq. (10) has the same mathematical form as the kinetic energy plus potential energy of a simple harmonic oscillator—plus a perturbation,  $V(u^{-1})$ . If  $V(u^{-1})$ , like  $\frac{1}{2}m^*u^2$  also happens to be quadratic in *u*, then the entire  $V_c(r)$  is quadratic in *u* takes the form

$$V_e(r) = \frac{1}{2}\gamma u^2 \tag{12}$$

for some constant  $\gamma$ . Should that occur, then  $u \sim \cos(\omega \varphi)$  where  $\omega^2 = \gamma/m^*$ . The criteria for a closed orbit, Eq. (1), becomes

$$\varphi_A = \frac{\pi}{\omega} \tag{13}$$

where, according to Eq. (1),  $\omega$  must be a rational number. Of course, V(r) is not always quadratic in u. But if a Taylor series expansion of the effective potential is dominated by the quadratic term, then the argument about  $\gamma = m^*\omega^2$  holds.

As noted, the potential V can be seen as a perturbation. Since we are dealing with *bound* orbits, closed or not, let us suppose the system that V perturbs is a circular orbit of radius  $r_0 = 1/u_0$ . The effective potential therefore has a minimum at this radius (see Fig. 2). Let us expand the effective potential  $V_e(u)$  in a Taylor series about  $u = u_0$ :

$$V_e(u) = V_e(u_o) + (u - u_o) \left[ \frac{dV_e}{du} \right]_{u_o} + \frac{1}{2!} (u - u_o)^2 \left[ \frac{d^2 V_e}{du^2} \right]_{u_o} + \cdots$$
 (14)



**FIGURE 2.** The  $1/r^2$  (top red) curve is the angular momentum's contribution to  $V_e(r)$ ; the bottom (green) curve illustrates an attractive potential, in this instance  $V(r) \sim -1/r$ ; and the curve (yellow) with the minimum at  $r_0$  represents the effective potential  $V_e(r)$ .

With  $V_c(u)$  a minimum at  $u_o$ , the first derivative term vanishes. Denote  $V_c(u_o) \equiv E_o$ ,  $u - u_o \equiv \varepsilon$ , and  $\left[\frac{d^2 V_c}{du^2}\right]_{u_o} \equiv \Gamma$ . The Taylor series may be written

$$V_e(u) = E_o + \frac{1}{2}\varepsilon^2\Gamma + \cdots.$$
 (15)

Now Eq. (10) may be restated

$$E - E_o = \frac{1}{2}m^* \left(\frac{d\varepsilon}{d\varphi}\right)^2 + \frac{1}{2}\Gamma\varepsilon^2 + \cdots.$$
 (16)

By examining  $\Gamma$ , which depends on the second derivative of  $V_e$ , let us see what constraints it imposes on power-law potentials in producing closed orbits. The first derivative of  $V_e$  with respect to u is, in terms of V(r),

$$\frac{dV_e}{dy} = m^* u + \frac{dV}{dr} \frac{dr}{dy} = m^* u - \frac{1}{v^2} \frac{dV}{dr};$$
 (17)

and thus the second derivative becomes

$$\frac{d^2V_e}{du^2} = m^* + \frac{2}{u^3}\frac{dV}{dr} + \frac{1}{u^4}\frac{d^2V}{dr^2}.$$
 (18)

At  $u = u_0$  we obtain

$$\frac{\Gamma}{m^*} = \frac{3V'(r_0) + rV''(r_0)}{V'(r_0)}.$$
 (19)

For this  $\Gamma$  to be the  $\gamma = m^* \omega^2$  of Eq. (12),  $\Gamma/m^*$  must be a positive real number. The question now becomes, what potentials V(r) allow this to happen? Define the function

$$f(r) = \frac{3V'(r) + rV''(r)}{V'(r)}.$$
 (20)

Since  $f(r_0) = \Gamma/m^* = const. > 0$ . Therefore for  $r \approx r_0$  we can say that  $f(r) \approx C = const. > 0$ . Then Eq. (20) gives

$$3V' + rV'' = CV'. \tag{21}$$

or

$$(C-3)V' = r\frac{dV}{dr} \tag{22}$$

which integrates to

$$\ln V' = (C - 3) \ln r + \ln k \tag{23}$$

or  $dV/dr = kr^{C-3}$  where k = const. Letting n = C - 2, a second integration yields

$$V(r) = \frac{k}{n}r^n. (24)$$

Recalling that  $\Gamma/m^* = C = n + 2$ , and assuming that further terms in the Taylor series may be neglected, we have our simple harmonic oscillator's angular frequency,

$$\omega = \sqrt{\frac{\Gamma}{m^*}} = \sqrt{n+2}.$$
 (25)

The criteria for the orbit to be closed, Eq. (1), requires  $\sqrt{n+2}$  to be a rational number. Clearly n=-1 and n=+2 make  $\omega$  a rational number, but what other values of n might produce closed orbits? Why not n=7 or 23 or 34? Even though these choices make  $\sqrt{n+2}$  an integer, evidently the rationality of  $\sqrt{n+2}$  is a *necessary* but not *sufficient* condition for the orbit to be closed, because the potential  $V(r) \sim r^n$  is also constrained by Newtonian mechanics. To find values of n that work, let us divide the real numbers into two groups, n < 0, and n > 0, and see how the principles of *mechanics* constrain the values of n that make  $\sqrt{n+2}$  rational.

#### The n < 0 Case

For n < 0, let n = -s with s > 0 (note that Eq. (25) requires  $-2 \le n < 0$ ). Then  $V(r) = (k/n)r^n = -(k/s)r^{-s} = -(k/s)u^s$ , and Eq.(10) takes the form

$$E = \frac{1}{2}m^* \left(\frac{du}{d\varphi}\right)^2 + \frac{1}{2}m^* u^2 - \frac{k}{s}u^s$$
 (26)

or

$$Eu^{-s} = \frac{1}{2}m^*u^{-s} \left(\frac{du}{d\omega}\right)^2 + \frac{1}{2}m^*u^{2-s} - \frac{k}{s}.$$
 (27)

With the change of variable  $x = u^{2-s}$ , Eq. (27) says

$$Eu^{-s} + \frac{k}{s} = \frac{1}{2}m^* \left(\frac{2}{2-s}\right)^2 \left(\frac{dx}{dx}\right)^2 + \frac{1}{2}m^*x^2.$$
 (28)

For an orbit to be *bound* with an inverse power-law potential requires E < 0. Since the power-law exponent does not depend on the energy, let  $E \to 0^-$ , when the particle become barely bound. Then Eq. (28) reduces to

$$\frac{k}{s} = \frac{1}{2}m^* \left(\frac{2}{2-s}\right)^2 \left(\frac{dx}{d\varphi}\right)^2 + \frac{1}{2}m^* x^2,\tag{29}$$

which is mathematically identical to the expression for the energy of a simple harmonic oscillator of total energy k/s, mass  $4m^*/(2-s)^2$  and spring constant  $m^*$ . It therefore has the angular frequency

$$\omega_o = \sqrt{\frac{m^*}{m^* \left(\frac{2}{2-s}\right)^2}} = \frac{2-s}{2} \ . \tag{30}$$

In a simple harmonic oscillator's motion, the coordinate may be positive *or* negative, oscillating with period  $T_0 = 2\pi/\omega_0$  about the origin. But since  $x = u^{2-s} = 1/r^{2-s}$  and r > 0, in the graph of the "potential energy"  $\frac{1}{2}m*x^2$ , the "motion" can take place only on the x > 0 side of the parabola. Therefore the period is  $T = \frac{1}{2}T_0$ , so that  $\omega = 2\omega_0$ . The condition for a closed orbit, Eq. (1), now says

$$\varphi_A = \frac{\pi}{2\omega_0} = \frac{\pi}{2-s} = \frac{\pi}{2+n} \,. \tag{31}$$

But we also require, from Eq. (25),

$$\varphi_A = \frac{\pi}{\sqrt{2+n}}.\tag{32}$$

Agreement between both expressions for  $\varphi_A$  requires  $2 + n = \sqrt{2 + n}$  and thus n = -1. The *only* closed orbit that results when n < 0 is n = -1.

#### The n > 0 Case

Turning to n > 0, Eq. (10) becomes

$$E = \frac{1}{2}m^* \left(\frac{du}{d\varphi}\right)^2 + \frac{1}{2}m^*u^2 + \frac{k}{n}\frac{1}{u^n}.$$
 (33)

Following the same procedure as in the n < 0 case, we multiply Eq. (33) by  $u^n$  then let  $x^2 \equiv u^{2+n}$ . In this way Eq. (33) is recast as

$$\frac{E}{r^n} - \frac{k}{n} = \frac{1}{2} m^* \left(\frac{2}{2+n}\right)^2 \left(\frac{dx}{d\theta}\right)^2 + \frac{1}{2} m^* x^2.$$
 (34)

Before going further, we note a difficulty. If  $(E/r^n) - (k/n)$  could somehow approach a constant, then Eq. (34) would describe a simple harmonic oscillator of angular frequency

$$\omega = \sqrt{\frac{m^*}{m^* \left(\frac{2}{2+n}\right)^2}} = \frac{2+n}{2} \tag{35}$$

which is identical to the n < 0 argument that led to n = -1, and therefore contradicts the hypothesis that n > 0. Another approach must be found.

Chin found a clever solution around this problem (see Appendix). However, at this point our approach differs from Chin's. Both approaches are correct; we offer one that we find even simpler.

Here is how we see it: With the power-law potential  $V \sim r^n$  for n > 0, for *small* r (large x) the effective potential is dominated by the  $1/r^2$  centrifugal potential, which goes to infinity as  $r \to 0$  ( $u \to \infty$ ). For *large* r (small u) the potential energy  $V \sim r^n$  dominates, and goes to infinity as  $r \to \infty$ , i.e.,  $x \to 0$  (see Fig. 3). The particle is always bound, and r can be made as small or as large as we like if E is sufficiently large. Consider two extreme cases with large E: (a) small r, and (b) large r.



7

(a) For large E and small r (large u) Eq. (10) becomes

$$E \approx \frac{1}{2}m^* \left(\frac{du}{d\theta}\right)^2 + \frac{1}{2}m^*u^2 \tag{36}$$

which describes a simple harmonic oscillator of angular frequency  $\omega_o = \sqrt{m^*/m^*} = 1$ . Since u > 0, only the positive side of the simple harmonic potential is accessible; thus the frequency is  $\omega = 2\omega_o$ , and by Eqs. (1) and (32) we have

$$\varphi_A = \frac{\pi}{2} = \frac{\pi}{\sqrt{2+n}} \tag{37}$$

which gives n = 2. So far so good, but we must verify that n = 2 is consistent with the other extreme.

(b) For large E and large r (small u), the centrifugal potential is negligible, and with n = 2,

$$E \approx \frac{1}{2}m^* \left(\frac{du}{d\theta}\right)^2 + \frac{k}{2}r^2. \tag{38}$$

Since u = 1/r, by the chain rule and with Eqs. (3) and (10) it follows that

$$\frac{du}{d\theta} = -\frac{m\dot{r}}{L} \tag{39}$$

which restores Eq. (38) back into the original expression for a simple harmonic oscillator subjected to the force  $-k\mathbf{r}$ :

$$E = \frac{1}{2}m\dot{r}^2 + \frac{L^2}{2mr^2} + \frac{1}{2}kr^2. \tag{40}$$

Evidently, the *only* closed orbit that results when n > 0 is n = +2.

In summary, for a particle moving in a central potential  $V(r) = kr^n$ , the orbit will be closed for only two values of n: -1 and +2. This is Bertrand's theorem.

# **APPENDIX**

# Another Approach When n > 0.

In his excellent paper, S. A. Chin<sup>2</sup> took another approach to finding solutions for n > 0. Return to Eq. (33) and consider the turning points, where the kinetic energy vanishes. Let  $u_1$  and  $u_2$  be the turning points corresponding to the smallest radius  $r_1$  ( $u_1 = 1/r_1$ ) and the largest radius  $r_2$  ( $u_2 = 1/r_2$ ). With  $u_k$  denoting either  $u_1$  or  $u_2$ , at the turning points the total energy is entirely carried by the effective potential, so that

$$E = V_e(u_k^{-1}) = \frac{1}{2}m^*u_k^2 + \frac{k}{n}u_k^{-n}$$
(41)

where n > 0. The orbit is bound, so as  $E \to \infty$ , r can become very small (u very large). For large E and large u the centrifugal potential dominates, and so

$$E \approx \frac{1}{2}m^*u_1^2 \equiv E_1.$$
 (42)

Let us now form the ratio

$$\Lambda(u) \equiv \frac{V_e(u^{-1})}{E_1} \tag{43}$$

which by Eqs. (41)-(42) becomes

$$\Lambda(u) = \frac{u^2}{u_1^2} + \frac{ku^{-n}}{nE_1}. \tag{44}$$

Let  $x \equiv u/u_1$ . Now Eq. (44) can be rearranged into the form

$$\Lambda(x) = x^2 + \frac{k}{n} \left(\frac{m^*}{2}\right)^{n/2} \frac{x^{-n}}{E_1^{1+n/2}}.$$
 (45)

As  $E_1 \to \infty$ ,  $\Lambda(x) \approx x^2$ , or  $V_e \approx E_1 x^2$ . Return this to Eq. (33), which becomes

$$E \approx \frac{1}{2}m^* \left(\frac{du}{d\theta}\right)^2 + E_1 x^2. \tag{46}$$

Noting that  $u = u_1x$ , it follows that

$$\frac{du}{d\theta} = \sqrt{\frac{2E_1}{m^*}} \frac{dx}{d\theta} \tag{47}$$

and thus

$$E \approx E_1 \left[ \left( \frac{dx}{d\theta} \right)^2 + x^2 \right]. \tag{48}$$

This can be rearranged to resemble the energy of a simple harmonic oscillator:

$$\frac{E}{2E_1} = \frac{1}{2} \left(\frac{dx}{d\theta}\right)^2 + \frac{1}{2}x^2 \tag{49}$$

which has angular frequency  $\omega_0 = 1$ , and again since only the positive half of the harmonic oscillator potential can be used, one obtains  $\omega = 2$ , and thus from Eqs. (13) and (32), n = 2.

## **ACKNOWLEDGMENTS**

We thank our professor, Dwight E. Neuenschwander, for his direction in this project. Although we have never met Professor Chin in person, we thank him for his fascinating article<sup>2</sup> that stimulated our interest in this problem. We also thank Professor Laura Jergensen for a careful reading a manuscript draft and suggesting improvements.

#### REFERENCES

- 1. J. Bertrand, C.R. Acad. Sci. 77, 849-853 (1873). Bertrand's theorem is apparently not widely discussed in mechanics textbooks.
- 2. S.A. Chin, Am. J. Phys. 83, 320-323 (2015).
- 3. J.B. Marion and S.T. Thornton, in Classical Dynamics of Particles and Systems 5th ed. (Thomson, Beaumont, CA, 2002), Ch. 8.