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Abstract. We consider a system consisting of a qubit and a microwave transmission line that are coupled by a capacitor which, in 
turn, is modulated sinusoidally. The Unruh effect is the simultaneous production from vacuum of a pair of photons, one in the qubit 
and the other in the cavity. The dynamical Casimir effect is the production from vacuum of a pair of photons in the cavity. We 
analyze this qubit–cavity system and show that the system can be viewed as a pair of coupled quantum-mechanical oscillators and 
that both the Unruh effect and the dynamical Casimir effect are resonances of this coupled oscillator system. For the case where the 
cavity supports two propagating modes, in addition to the Unruh and dynamical Casimir effect at each of the supported modes, we 
predict a “paired Casimir effect,” where one photon is emitted in the cavity in each of two allowed modes, at the appropriate 
driving frequency. We also calculate analytical approximations to the driving frequencies for all three effects.

INTRODUCTION

 Quantum field theory predicts that a uniformly accelerating photodetector will detect photons in an electromagnetic 
vacuum which is termed the Unruh effect [1]. It also predicts that accelerating the mirror boundary of a cavity will 
result in the production of photon pairs in the cavity, which is termed the dynamical Casimir effect. Since the uniform 
acceleration required to observe the Unruh effect is very large, ≈ 1020 m/s, following other researchers [2, 3], we 
consider the oscillatory analog of the Unruh effect where the photodetector is moved back and forth rapidly at 
gigahertz frequencies, resulting in (nonuniform) acceleration of similar magnitude. In this paper, we arrive at a 
unified analysis of photon production from an electromagnetic vacuum based on the oscillatory Unruh and dynamical 
Casimir effects.

We consider the qubit–cavity system analyzed by Blencowe and Wang [3] and shown in Fig. 1. According 
to the predictions of the oscillatory Unruh effect [2, 3], when the coupling capacitor is driven at the 
appropriate frequency, it will simultaneously produce a photon in both the qubit and the cavity. The photon 
generated in the qubit will cause a transition from the ground to the excited state. The photon in the cavity will 
excite one of the cavity modes determined by the energy/frequency of the photon. Since the boundary of 
the cavity is also oscillating, the dynamical Casimir effect [4], where a pair of photons is produced in 
the cavity while the qubit remains in the ground state, should be observed, albeit at a different driving frequency.

Following the methods in [3, 5] for the single-mode case, we can show that the quantum Hamiltonian for a 
transmission line supporting M modes is given by Ĥ∞ = Ĥ0 + Ĥ1, where
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Here, E0 and E1 are the two lowest energy levels of the qubit, ωm is the frequency of cavity mode m, âm and â†
m are 

ladder operators, and fm(t) = −īhgm(1 + z(t)), where z(t) is the changing thickness between the capacitor plates, and gm 
is the coupling coefficient between the qubit and cavity mode m. The detailed derivation of (1) can be found in [6]. 
Following [5], we have assumed that the boundary conditions on the qubit flux and cavity modes are such that the 
cavity modes are decoupled.

The cavity-mode terms in the Hamiltonian (1) are those of a parametric amplifier, and this analogy has been used to 
realize the dynamical Casimir effect using microwave cavity resonators with tunable lengths. However, we 
will show in our model (Fig. 1) that the combined qubit-cavity system is more analogous to a driven 
harmonic oscillator with the varying capacitance providing the driving term.



TIME-DEPENDENT PERTURBATION SOLUTION

   We view Ĥ0 as the unperturbed Hamiltonian and Ĥ1 as a time-dependent perturbation. If we denote the cavity state 
as nk = (nk1 ,nk2 , . . . ,nkM ), the state of the unperturbed system can be represented by |q,nk⟩ = |q,nk1 ,nk2 , . . . ,nkM ⟩, 
where q ∈ {g,e} denotes the state of the qubit (ground or excited) and nki ≥ 0 is the total number of photons in 
cavity mode ki. Thus, N = ∑i nki is the number of photons in the cavity.

Denoting the state of the perturbed system as ∑cq,nk |q,nk⟩, using standard time-dependent perturbation theory 
(see, e.g., Eq. (5.5.17) of [7]), we have the following differential equations for the cq,nk.
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By the definition of the ladder operators âm and â†
m, and the operators σ+ and σ−, we can show that
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where 1m is the vector whose mth component is unity, and the other components are zero.
We also know that
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Thus, defining Ω = (E1 −E0)/ h̄,

Ee,nk±1m −Eg,nk = ̄h(Ω±ωm) , and Eg,nk±1m −Ee,nk = ̄h(−Ω±ωm) . 

Plugging these into (2), we get
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Since we are dealing with weak powers, we neglect instances where three or more photons propagate in the 
cavity. Now, the state of the system can be written as |q,0⟩ when there are no photons in the cavity, |q,1n⟩ 
when there is one photon in mode kn, |q,2n⟩ when there are two photons in mode kn, and |q,1m,n⟩ when there 
is one photon in each of the modes km and kn. (Here, 0 = (0, . . . ,0), 2n = 1n + 1n, and 1m,n = 1m + 1n.)

We can now write our differential equations for M allowed modes of propagation:
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(8)

RESONANCES FOR TWO PROPAGATION MODES

 We consider the case where only two modes propagate in the cavity (M = 2) and write the Fock states as 
|q,nk1 ,nk2 ⟩. We set the driving term z(t) = 0 in order to find the homogeneous solution to Eq. 
(8), which will identify the resonance frequencies of the system. In turn, we can then determine the 
driving frequency to excite a specific resonance.

(



Taking the Fourier transform of (8), we get

iωCg00(ω) = g1Ce10(ω −Ω−ω1)+g2Ce01(ω −Ω−ω2) (9)

iωCe10(ω) = g1
√

2Cg20(ω +Ω−ω1)−g1Cg00(ω +Ω+ω1)+g2Cg11(ω +Ω−ω2) (10)
√

(11)iωCg20(ω) = −g1 2Ce10(ω −Ω+ω1)

iωCg11(ω) = −g2Ce10(ω −Ω+ω2) − g1Ce01(ω −Ω+ω1). (12)

(We have omitted the equations for Ce01 and Cg02.) We use (9), (11), and (12) to substitute for Cg00, Cg20, and Cg11 
in (10) to get(

ω − g2
1

ω +Ω+ω1
− 2g2

1
ω +Ω−ω1

− g2
2

ω +Ω−ω2

)
Ce10(ω)

= g1g2Ce01(ω +ω1 −ω2)

(
1

ω +Ω+ω1
+

1
ω +Ω−ω2

)
. (13)

(14)

(15)

F(ω,ω1,ω2,Ω,g1,g2)F(ω +ω1 −ω2,ω2,ω1,Ω,g2,g1)Ce10(ω)
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The l.h.s. has terms of order g2
1 and g2

2. Therefore, for small g1 and g2 we can neglect the g2
1g2

2 term on the right and 
conclude that the resonance frequencies for ce10(t) are among the zeroes of F(ω,ω1,ω2,Ω,g1,g2) and F(ω + ω1 −
ω2,ω2,ω1,Ω,g2,g1). If we consider the g2

1 and g2
2 terms as perturbations, the unperturbed zeroes of F(ω,ω1,ω2) are 0,

−Ω−ω1, −Ω+ω1, and −Ω+ω2, and hence those of F(ω+ω1−ω2,ω2,ω1) are ω2−ω1, −Ω−ω1, −Ω+2ω2−ω1,
and −Ω+ω2. Therefore, the six unique possible resonance frequencies for the unperturbed |e10⟩ are

ωR,e10 ∈ {0,ω2 −ω1,−Ω+ω1,−Ω−ω1,−Ω+ω2,−Ω+2ω2 −ω1}. (17)

The “zero” frequency component corresponds to steady growth of amplitude, and we should drive the system to 
excite this resonance. Considering (10), or its time-domain version from (8), the cg,0 dominates the r.h.s. as the other 
terms are small in comparison. Therefore, the driving frequency of the excitation, z(t), in order to trigger resonance at 
ωR,e10 is given by

ωd,e10 = ωR,e10 +Ω+ω1 ∈ {Ω+ω1,Ω+ω2,2ω1,0,ω1 +ω2,2ω2}. (18)

The actual resonance frequencies will be close to these unperturbed values, and we can solve for them numerically. 
To find an analytical approximation to the resonance and driving frequencies for nonzero g1,g2 ≪ Ω,ω1,ω2, we 
use the perturbation series method: We assume the solutions to F(ω,ω1,ω2,Ω,g1,g2) = 0 and F(ω + ω1 −
ω2,ω2,ω1,Ω,g2,g1) = 0 are of the form x00 + x10g1 + x01g2 + x20g2

1 + x02g2
2 + x11g1g2, expand the polynomials to

second order, equate the coefficients of g1, g2, g2
1, g2

2 , and g1g2 to zero, and solve for the xi j’s. By this method we 
find that the approximate driving frequency for steady resonance of the |e01⟩ state is

ωd,Unruh = Ω+ω1 +
3Ω+ω1

Ω2 −ω2
1

g2
1 +

1
Ω−ω2

g2
2. (19)

At this driving frequency, we expect simultaneous production of pairs of photons in the qubit and in the cavity with 
energy h̄ω1, and the probability of this pair production steadily increases with time. In other words, this is the driving

Simplifying, we get an equation of the form

F(ω,ω1,ω2,Ω,g1,g2)Ce10(ω) = 1g2Ce01(ω +ω1 −ω2) [ω +Ω−ω1], 

where F is a polynomial of degree 4 in ω. Similarly,

F(ω,ω2,ω1,Ω,g2,g1)Ce01(ω) = 1g2Ce10(ω +ω2 −ω1) [ω +Ω−ω2] . 

From (15) we substitute for Ce01 into (14) to get an equation of the form



frequency for observing the Unruh effect at ω1.
The possible resonance frequencies for |g20⟩ are obtained by shifting those of |e10⟩ by (Ω − ω1) from (11):

ωR,g20 ∈ {Ω−ω1,Ω+ω2 −2ω1,0,−2ω1,ω2 −ω1,2(ω2 −ω1)}. (20)

Now, substituting (10) in (11), we see that the possible driving frequencies for resonance of this state are obtained by 
adding 2ω1 to these values, equivalent to adding Ω + ω1 to the resonance frequencies of |e01⟩ . The perturbation series 
approximations are also obtained using this shift. Hence,

ωd,Casimir = 2ω1 −
2

Ω−ω1
g2

1. (21)

The driving frequency for the dynamical Casimir effect is unaffected by the presence of the second mode, up to the 
accuracy of the perturbation approximation. This is unlike the Unruh driving frequency which was altered by the 
presence of the second cavity mode.

Finally, we consider the |g11⟩ state. The resonance frequencies are obtained by shifting those of |e10⟩ by (Ω − ω2) 
from (12):

ωR,g11 ∈ {Ω−ω2,Ω−ω1,ω1 −ω2,−ω1 −ω2,0,ω2 −ω1}. (22)

Substituting (10) in (12), we see that the driving frequencies are obtained by adding ω1 + ω2 to these, indeed giving 
us the same possible unperturbed driving frequencies as for the |e10⟩ and |g20⟩ states.

Specifically, ω1 + ω2 is the driving frequency for steady resonance of the |g11⟩ state. At this driving frequency, a 
pair of photons is produced simultaneously in the cavity, one each at ω1 and ω2. Generalizing, if the cavity supports 
M modes, then we have additional resonances for the |e1m,n⟩ mode for ωd = ωm + ωn, m,n ∈ [1,M]. Since the case m 
= n corresponds to the dynamical Casimir effect, we may term this the paired Casimir effect. There is no conceptual 
difficulty in allowing for a continuum of modes: we expect to see the paired Casimir effect at driving frequencies ωd
that satisfy ωd = ωm + ωn, where ωm and ωn are any two allowed modes.

On the same lines as above, we find that the driving frequency for the steady resonance of the |g11⟩ state 
corresponding to the paired Casimir effect is

ωd,paired Casimir = ω1 +ω2 +
1

−Ω+ω1
g2

1 +
1

−Ω+ω2
g2

2. (23)

Numerical Results for the Two-Mode Case

   For strong coupling, say, g1,g2 ∼ 0.1, the driving frequencies obtained by our perturbation approximation are 
significantly different from the unperturbed values. We refer the reader to [6] for some numerical results to verify 
their accuracy. Here, we assume weak coupling coefficients, g1 = g2 = 0.01. In this case, the resonance and driving 
frequencies are negligibly different from their unperturbed values. Despite the weak coupling, we will see that all  
three effects can be clearly observed.

In Fig. 2, we plot the probabilities for each of the cavity states to illustrate the Unruh effect at ω1. We can see that 
the probability of |e10⟩ approaches that of the starting state |g00⟩. The probabilities of the other states are negligible. 
Next, we plot the probabilities for each of the cavity states to illustrate the dynamical Casimir effect at ω1 in Fig. 
3(a). This is orders of magnitude weaker than the Unruh effect and can be explained as follows. The initial condition 
is cg00(0) = 1, and this is the only driving term for both effects. From Eq. (10), we can see that the amplitude of the 
ce10 state which corresponds to the Unruh effect is linear in the coupling coefficient g1, whereas by combining Eqs. 
(11) and (10) we see that the amplitude of the cg20 state is quadratic in the coupling coefficient g1. Since we assumed 
g1 = 0.01, we expect the relative state probability for the dynamical Casimir effect to be four orders of magnitude 
smaller than that of the oscillatory Unruh effect, and this is borne out by our numerical results.

Finally, we plot the probabilities for each of the cavity states to illustrate the paired Casimir effect at ω1 and ω2 in 
Fig. 3(b). This effect is also orders-of-magnitude weaker than the Unruh effect but similar in strength to the 
dynamical Casimir effect, which can be understood by reference to Eqs. (12) and (10).



FIGURE 1. System model based on [3], consisting of a qubit photodetector and microwave cavity or transmission 
line coupled by a mechanically oscillating capacitor.

FIGURE 2. The time evolution of the state probabilities |cq,n(t)|2 for ω1 = 9π, ω2 = 10π, Ω = 6π, g1 = g2 = 0.01, and ωd = 
15π, which corresponds to the Unruh effect at ω1, which is clearly observed.

FIGURE 3. 
(a) The time evolution of the state probabilities |cq,n(t)|2 for ω1 = 9π, ω2 = 10π, Ω = 6π, g1 = g2 = 0.01, and ωd = 18π, which

corresponds to the dynamical Casimir effect at ω1: there is a non-negligible probability of occupying the state |g20 .
(b) The time evolution of the state probabilities |cq,n(t)|2 for ω1 = 9π, ω2 = 10π, Ω = 6π, g1 = g2 = 0.01, and ωd = 19π, which

corresponds to the paired Casimir effect at ω1 and ω2: there is a non-negligible probability of occupying the state |g11 .

CONCLUSIONS

   We neglected states with three or more photons and analytically found the driving frequencies that would 
result in the oscillatory Unruh and dynamical Casimir effects for a cavity supporting two modes. In both 
cases we derived analytical approximations to the driving frequencies necessary to observe the oscillatory 
Unruh and dynamical Casimir effects. For a multimode cavity, we predicted a new paired Casimir effect where 
a photon is emitted in each of two different modes of the cavity.

We did not make any assumption as to the rapidity of oscillations of the coupling capacitor. Hence, our 
model predicts that the oscillatory Unruh and dynamical Casimir effects merely reflect the resonances of the coupled 
qubit–transmission line, and no relativistic effects appear to be involved. Of course, building cavities 
at lower than microwave frequencies is probably unfeasible.

(a)             (b)



REFERENCES

1. W. G. Unruh, Phys. Rev. D 14, 870–892 (1976).
2. H. Wang, M. P. Blencowe, C. M. Wilson, and A. J. Rimberg, Phys. Rev. A 99, 053833 (2019).
3. M. P. Blencowe and H. Wang, Philos. Trans. R. Soc. London, Ser. A 378 (2020).
4. V. V. Dodonov, J. Phys. Conf. Ser. 161 (2009).
5. A. Parra-Rodriguez, E. Rico, E. Solano, and I. L. Egusquiza, Quantum Sci. Technol. 3 (2018).
6. E. N. Sivarajan, On the Resonances of Coupled Qubit-Cavity Systems, Senior honors thesis, Dartmouth

College (2021).
7. J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics, 2nd ed. (Cambridge University Press, 2017).

ACKNOWLEDGMENTS

This work was done at the physics department of Dartmouth College in Hanover, New Hampshire. I sincerely 
thank my senior honors thesis advisor, Professor Miles Blencowe, Department of Physics, Dartmouth College, 
for his guidance and encouragement throughout this work. 


	Untitled



