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ANOMALOUS DIFFUSION AND THE EGG CRATE POTENTIAL:
A NUMERICAL STUDY IN CHAOTIC HAMILTONIAN
DYNAMICS

M. Golladay T
Physics Department
Roanoke College, Salem, VA 24153

ABSTRACT

The motion of a classical particle in an “egg-crate” potential is modeled in an effort to understand
chaotic Hamiltonian dynamics. While all energy levels are examined, our main interests are in energies
that are associated with anomalous diffusion. However, periodic motion and classical Brownian motion
are observed at various energy levels in the system. It is noted in particular that particles with energies
between the saddle point of the potential and below the absolute maximum exhibit anomalous diffu-
sion. The power spectra at these levels exhibit 1/f noise. Algebraic tails are present in the velocity
autocorrelation functions of the energies with 1/f noise. Further exploration of these tails suggests that

multiple types are present at different energies.

INTRODUCTION

The study of chaotic dynamics and Lévy walks is a
relatively new branch of dynamic systems theory. Its
roots, however, are buried in the development of theories
on Brownian motion, which was first reported in 1785 by
Jan Ingenhausz, a Dutch physicist !. The phenomenon,
generally associated with the motion of particles in fluids,
was named after Robert Brown due to his work in the field
in the nineteenth century, although many physicists,
including Albert Einstein, have also examined it. For our
purposes, it suffices to classify Brownian motion as
‘classical diffusive motion,’ characterized by the property
that the root-mean-square deviation of the position grows
linearly with time. While this classical diffusion is
observed in our system, it is not our main focus. In
general, diffusive motion demonstrates the following
relationship:

<rr>=( (N
where r is position and 7 is time. When vy =1, the diffusion

Molly is currently a graduate student with the physics
department at Cornell University. This research was
begun during the summer before her senior year at
Roanoke College through their undergraduate
research program. When she isn't studying nonlinear
dynamics, Molly is often seen playing her violin or
volunteering at the local SPCA.

is classical. However, for all other values of v, the
diffusion is anomalous. When y < 1, it is called
‘subdiffusion’, and y> 1 is called ‘superdiffusion’.

With the advent of increasingly powerful computers and
computational methods, the movement toward numerically
studying previously unsolvable systems is a natural one.
Recently, the study of systems involving fairly complex
and nonlinear partial differential equations has become a
rich field. However, due to the approximate nature of
numerical methods, it is often easy to mistake a numerical
error or property for a physical property of the system one
is studying. This makes it necessary to verify the results
of any numerical model so that one can be sure that any
‘abnormal’ or surprising results are in truth related to the
system itself and not to the numerical method used to
solve it.

With this in mind, we return to the discussion of the types
of different diffusive motion. As recently as twenty years
ago, the first examples of enhanced diffusion related to
random walks were discovered 3. Christened ‘Lévy
walks’, these random walks have as their chief characteris-
tic a pattern of self-similar jumps. Thus, rather than
exhibiting classical diffusion, Lévy walks demonstrate
motion that is ‘beyond Brownian’ !. The nomenclature
‘Lévy walk” was chosen due to the similarity of the jumps
in these cases of enhanced diffusion to the steps in the
well-known Lévy flights; the average jump length is
infinite in individual steps 3.
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In this work, we examine a specific example of a Lévy
walk, associated with the motion of a classical particle in
the egg-crate potential, in verification of work done
previously by T. Geisel et al. 3, We provide a detailed
description of the system and its solution at different
energy levels. We then examine the energy levels that
exhibit classical diffusion and deal with the energy levels
that exhibit anomalous diffusion.

THE EGG-CRATE POTENTIAL
Figure 1 is a graphical representation of the “egg-crate™
potential, so named due to its periodic shape bearing a
resemblance to an egg-crate. It should be noted that the
minima exist at V = 0, the maxima at V = 6, and saddle
points where V = 2. Essentially, the potential can be
viewed as a group of “cells,” each of width and length 2.
These physical characteristics of the potential play a role

in the behavior‘g&liﬁ gv(mﬂ: 9Ie¢§rmin energy leveﬁ)
; i :

We chose to use a two-dimensional Fourier series repre-
sentation of this nonlinear ‘egg-crate’ potential of the
form:

For simplicity, we used the first three terms of this series
to represent our potential:

V(xy)=a+b|cos(x) + cos(y)] +c[costreosy)]  3)

where a = 2.5, b= 1.5, and ¢ = 0.5. The units have been
non-dimensionalized throughout this paper to facilitate the
numerical nature of our work.

The motion of a test particle of mass unity in the system is
simulated using its Hamiltonian:

v: v}
H= —2‘-— +5+ V(x,y). (4)

However, to apply the necessary method for numerical
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Figure 1
The periodic, nonlinear egg-crate potential
V(x,y) = a + b[cos(x) + cos(y)] + ¢ [cos(x) cos (y)],
where a= 2.5, b= 1.5, and c = 0.5.

solution, the Hamiltonian equations of motion had to be
applied to determine the acceleration in each direction.

a,=-sin (x) [b + ¢ Cos (y)]
a,=-sin (y) [b + ¢ cos {x)]. (3)

Equation 5 represent two first-order differential equations
whose solutions are v, and v, respectively. When com-
bined with the fact that velocity is itself the first order time
derivative of position, two systems of two first-order
ODE’s, one for the x-coordinate, the other for the y-
coordinate, resulted. Acceleration and velocity were then
solved for to determine the velocity and position, respec-
tively. The 4™ order Rungé-Kutta method was used to
integrate the system of equations.

It must be emphasized here that by using numerical
techniques to solve and analyze the motion in this poten-
tial, error is inevitably introduced into any solution. Itis
this fact that makes the previous findings 23 subject to
further analysis. The error due to the numerical approxi-
mations must at all times be monitored carefully so that
one can be assured that all behaviors observed in the
system originate from the system and not from the
numerics themselves. First and foremost, due to the
Hamiltonian nature of this system, energy must be
conserved at all times. To monitor this, we used the
relationship between the variance of the total energy with
respect to our variables (x, y, vy, vy, and 1):

OPH OH  OH OH

O =0, o *+0, 0y +0,, ov.? +0,, ov2’ (©)

where

=02 =0,? =0, =(dr)’, @)
and dt is the step size. The variance of the energy, then,
depends on step size and initial conditions. This is moni-
tored through calculating o within the simulation by
computing the particle’s total energy at various points
during execution. If Gg is within our established bound, as
shown below, the energy is conserved and the numerical
error is within acceptable limits.

For this experiment, we chose an initial value of x =-10
and an initial for y=5. Solving the variance equation
(Equation 6), shows that 62 <3.071 (dr?). We chose f
(df) = 102, implying that 6 < 1.75x10-2 and calculated o
within the simulation consistently to be = 10-8. Thus, the
numerical error due to our simulation is within acceptable
bounds.

S |

The solution to our system of ODE'’s yielded different
results at different energy levels, but a definite relationship
between behaviors at certain levels emerged:

E<20 periodic motion
20<E<46 anomalous diffusion
50<E<6.0 classical diffusion
E>6.0 ‘free’ particle motion
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The particle trajectories for these energy levels are shown
in Figure 2 4. Tt should be noted that upon examination of
the trajectories only, one cannot distinguish between the
anomalous diffusion levels and the classical diffusion
levels. A more detailed examination of the behavior at
each energy level is required.

The motion of our test particle depends primarily on two
characteristics: the initial energy of the particle; and
secondly, the initial position of the particle. To focus
entirely on the particle’s energy and its effect on the
particle’s behavior, we have held the initial position of the
particle constant at all energy levels: x=-10and y = 5.
This places the particle completely inside of a single cell
in the potential.

As the behavior of the system at various energies was
examined, a definite structure of energy levels became
apparent. The behavior at each group of energy levels will
be discussed separately, starting with the most ‘trivial’
case.

For all energies above E = 6, the particle’s energy exceeds
the maximum energy of the potential. Thus, the particle is
considered ‘free’, able to follow a trajectory not confined
by the potential. At these energies, the particle does not
interact in a complex fashion with the potential and,
therefore, is not very interesting to study in connection
with this potential. It should be noted that for energies
greater than but fairly close to E = 6, the particle still feels
the effects of the potential, but its motion is not confined
to the anatomy of the potential itself, thus eliminating the
complex behavior observed in lower energies.

Particles with energies E < 2 undergo periodic motion,
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Figure 2
Trajectory of particle at energies (a) E=2. (b) E=4. (c)
E=5.5(d) E=6.0. The horizontal axis is the x position and
the vertical axis is the y position of the particle at a given
fime.

Tl T T

LAt
[~ ..J'

."
4‘".;
a0 !
/
Vd
L] ._;’
i /
i

Y,

/

FET] /

a i L i " I i " A i
[ ] S s [0 B 10 th Had 1800 10 Dl

T
Figure 3
Time series (<r2> vs time) for energy E = 5.5. The linear
relationship between t and <r2> indicates classical
diffusion.

‘trapped’ in a single cell. It is possible to determine the
period of this motion, but it depends strongly on the initial
conditions of the particle and requires solution of the
quadrature:

T= 2] S — ) ®)
V2[E-V(xy)]

where the limits of integration are the turning points of the

particle and are not trivial to locate. Thus, if the initial

conditions vary even slightly, the turning points are altered

and thus, the period is changed.

For more interesting behaviors, then, we turn to energies
between the saddle points and the absolute maxima. The
following sections will discuss the diffusive behavior
observed at these energy levels in detail.

CLASSICAL DIFFUSION
It has been previously suggested ? that one can determine
two distinct types of diffusion for energies between E = 2
and E = 6. So we began looking at each ‘set’ of energies
discretely in an attempt to validate these findings. In the
upper energies (those between E =5 and E = 6), we
expected to find classical Brownian motion.

The main characteristic of classical Brownian motion is
the following relationship:

<x*>=(2D)t, (C)]
where D is the diffusion coefficient. Therefore, this
relationship should hold true for 5 < E < 6. However,
since our system is two-dimensional, Equation 9 must be
adapted to suit our needs:

<P>=(4D)1, (10)
where r2 = x2 + y2. We created a time series graph where
we plotted time versus 2. Figure 3 depicts our findings.
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The velocity distribution function for energy E = 5.5. The
chi-squared structure here is consistent with each of the
velocity components being a normally distributed random
variable, i.e., classical diffusion.

The right-hand side of Figure 3 shows the time series for
E = 5.5, demonstrating the linear relationship between r2
and r. The diffusion coefficient for this energy level can
then be found from the slope of the line.

We also have used a binning technique to examine the
distribution of the velocity values during a simulation.
This technique has revealed a chi-squared distribution,
implying that the velocity components are normally
distributed random variables, suggesting classical diffu-
sion. Figure 4 shows one such distribution for £ =5.5.

We used a third technique, the Poincar surface-of-section,
to support our claim that for energies between E = 5 and E
= 6, classical diffusive motion is observed. The purpose of

“hertrial A"

e =f

Figure 5
Poincaré surface-of-section (y vs vy) for energy E=5.5 at
the cell boundaries x = 2mn. It should be noted that the
lack of a fractal structure implies the classical nature of
the diffusion.

this technique is to reduce an unwieldy four-dimensional
phase space to a two-dimensional representation through
taking a series of ‘cuts’ in this space. Our cut was in
essence a ‘recording’ of every time the particle changed
cells (the cell boundaries occur when x = 2nn, where n is
an integer. When the particle has crossed this line, the y-
coordinate and the vy-coordinate (mod 2n) are recorded.
This record constitutes the Poincaré sections. Figure 5
shows the surface-of-section for E = 5.5. The apparent
non-deterministic behavior suggests diffusion, but one that
has no fractal structure, such as in classical diffusion.
Figure 5 is important only as a foil to the surface-of-
section diagrams for anomalously diffusing particles.

Anomalous Diffusion
And so, we have the hypothesis 3 that energies between E
=5 and E = 6 exhibit classical diffusion, leading us to
examine the conjecture that the energy levels beneath this
display non-classical diffusive behavior.

Our first tool here is the Poincaré surface-of-section. Two
sections are shown graphically in Figure 5 (E = 5.5) and
Figure 6 (E = 4.0). The former is an example of classical
diffusion. It is important to compare Figure 5 to Figure 6
to understand the distinction between the two types of

(a)

e ra s S i
(h) (e}

Figure 6
(a) Poincaré surface-of-section for energy E = 4 at the cell
boundaries (x = 2mn). (b) and (c) are magnifications of
the same plot, emphasizing the self-replicating, or fractal,
structure exhibited in the daughter islands.
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diffusion. Figure 6 is more structured than Figure 5,
indicating that a more complex behavior is occurring in the
particle’s motion. Also, Figure 5 demonstrates the self-
similar structure that is a hallmark of chaotic systems, as
well as the characteristic cantori, or island, structure. The
surface-of-section implies diffusive behavior, but hints at a
more complex chaotic motion than observed previously in
the higher energy levels.

To examine this further, the same time series technique is
applied to this ‘set’ of lower energies that was discussed in
the previous section. This is done to establish a more clear
picture of this anomalous behavior in terms of the defini-
tion of diffusive motion as described in Equation 1. In
short, we desire to obtain an estimate for the parameter Y
that defines the nature of the diffusion. Figure 7 shows
our results for £ = 4.0 and indicates that for energies
between E =2 and E = 4.6, Y is greater than 1, establish-
ing a superdiffusive motion in these energies.

Now that the superdiffusive nature of the particle’s motion
has been established, we turn to statistical analysis to gain
insight into the motion itself. First, we examine the
velocity distribution function of the system. Figure 8,
using the same binning technique mentioned previously,
shows the distribution function for the velocities at £ =
4.6. The distribution suggests that the velocity compo-
nents are not normally distributed random variables,
indicating interesting statistical behavior at these energies.
This is to be expected given the strange nature of the
diffusion.

We now examine the velocity autocorrelation function of
the system. The autocorrelation function in essence is a
graphical representation of the “memory” of the particle,
described by the following relation ©:

R IT R |

€ e L L& E o rin iie (2E] H. By drm

T
Figure 7
Time series (<r2> vs time) for energy E = 4.0. The

nonlinear relationship between t and r2 indicates that the
particle is not undergoing classical diffusion.

0.10f . ‘ ‘
0.06} .
0.04fF .
0.02F :
0.00¢ re ; ;
0 1 2 3 4
Yelocily
Figure 8

Velocity distribution function for energy E = 4.6. The
structure of the VDF here, unlike that in Figure 4, is not
consistent with each of the velocity components being a
normally distributed random variable, suggesting non-
Gaussian or anomalous diffusion.

p(t)= <(v) (viss) > (11)
The time it takes for the autocorrelation function value to
approach zero represents the particle’s “memory span.”
Since we are dealing with a numerical solution, we must
use the discrete form of the autocorrelation function 7:

P = % () (.1)-

We use the autocorrelation function to determine the
power spectrum. A spectral analysis often provides a more
general formulation of the system. To determine the
power spectrum, S(w), a Fourier transform was performed
on the autocorrelation function ©:

S() = %f p(f) cos (@) dt.

We must keep in mind that our autocorrelation function is
discrete, so again, the discrete form of the power spectrum

(12)

(13)

100.0F T T
L=4.0

.
<

Power Spectrum

Frequency

Figure 9
Power spectrum S(w) for energy E = 4. The line @3/
indicates the presence of the 1/f relationship as @ goes to
0.
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Velocity autocorrelation functions for energies (a) E = 3.0
and (b) E = 4.0.

is needed 7. Rather than express it mathematically, we
prefer to program it directly, as several complex numerical
concepts such as windowing are needed to express it

properly.

Figure 9 shows the power spectrum for E = 4. This
analysis was performed on several energies between E = 2
and E =4.6. We superimpose a line S(@)= w34 onto

the spectrum shown in Figure 9, demonstrating a relative
fit. This process was performed on the other energy levels
in Table 1 as well. For the most part, each value corrobo-
rates the previous findings: the presence of 1/f noise3.

1/f noise, often called “flicker noise,” is a characteristic
that is closely related to the “memory span” of the particle
as seen in the autocorrelation function 8. By definition,
observation of 1/f noise is related to the power spectrum
by:

(14)

Thus, 1/f noise emerges as f approaches infinity and is an
intrinsic, property of the system. In the previous work, it
is argued that all nonintegrable Hamiltonian systems
display 1/f noise in their power spectra 3. We have shown
that this hypothesis is correct for the egg-crate potential.

: o
ul)l_l;l"}] S(w) = o

Let us now return to the autocorrelation functions and
explore further. Figure 10 shows the velocity
autocorrelation functions for £ =3.0 and E =4.0. As
before stated, the autocorrelation function serves as a sort
of graphical measure of the ‘memory span’ of the system
and so. For a particle with a ‘bad memory,” the
autocorrelation function should go to zero fairly quickly.
However, it should be noted that for our anomalously
diffusing levels, the autocorrelation functions do not
approach zero and remain there. Rather, the
autocorrelation function seems to ‘hover,” indicating that
the particle retains a fair amount of knowledge about its
initial velocity (which is related to both the initial energy
and the initial position).

A log-log plot of the autocorrelation functions (Figure 11)
reveals the presence of algebraic tails, sometimes referred
to as long-time tails. Algebraic tails correspond to an
algebraic decay in the correlation function as opposed to
the exponential decay that is generally observed °. Thus,
the presence of algebraic tails establishes definitively that

E o (x0.1)
2.5 0.8

3.0 0.7

4.0 0.75
4.25 1.0

4.35 1.1

4.6 1.0

Table 1

The exponent, o, values in the 1/f relationship for the

power spectra at various energy levels 2.
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Figure 11

Velocity autocorrelation functions on a log-log scale to

highlight the algebraic tail structure.
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particles with energies between E =2 and E = 4.6 have a
long ‘memory span’ and possess more information about
their previous velocities than is to be expected.

We now compare the autocorrelation functions with
algebraic tails to each other in an attempt to further
understand the nature of the time lags themselves. Ini-
tially, it was expected that tails relating to different
anomalously diffusing energies were very similar. How-
ever, Fig. 12 depicts a histogram plot of the ratio of the
autocorrelation functions at £ = 3 and E = 4.6, again using
our binning technique. For the most part, these functions
are very comparable. But around step 16, there is a drastic
difference between the functions, indicating that the
algebraic tail observed at E = 3 is different in nature from
the tail at E = 4.6. This is a surprising result that hints at
an even higher complexity present in this system.

DISCUSSION
We have presented a thorough model and analysis of the
motion of a classical particle in an egg-crate potential. It
corroborates the research performed previously by T.
Geisel and his group 3, thus providing an important
validation of their work. This validation was necessary
due to show that the numerical errors did not dominate the
results. We feel confident in our results due to our care not
to exceed the acceptable limits of error dictated by the
standard deviation in Equation 6.

The presence of algebraic tails in the correlation functions
of anomalously diffusing energies is a hallmark of chaos
and is to be expected. However, the fact that different
types of tails have been observed is not. It is currently
unclear as to whether we are looking at different tails at
every different energy or whether there exist subranges of
energies that correspond to a certain family of tail. Further
analysis will determine this.

The discovery of the presence of 1/f noise in the power
spectra and distinct algebraic tails in the autocorrelation
functions as a consequence of the motion of a classical
particle in the egg-crate potential. It is important in future
studies of chaotic Hamiltonian dynamics, establishing a
prototype for the nonlinear Hamiltonian system and its
statistical properties.
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Figure 12
Histogram plot of the ratio between the velocity
autocorrelation functions for energies E = 3.0 and E=4.6.
The spike in the graph indicates that the algebraic tail at E
= 3.0 differs signficiantly from the tail at E = 4.6, despite
the fact that both energies exhibit anamalous diffusion.
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ABSTRACT
Quantum tunneling is demonstrated in the form of ‘frustrated total internal reflections’ when A=2.857
cm microwaves tunnel through an air gap between two right angle prisms. For both orientations:
transverse electric (TE) and transverse magnetic (TM); the transmissivity as a function of gap size
agrees well with the theoretical predictions derived from electromagnetic theory.

INTRODUCTION
The concept of quantum tunneling is readily illustrated in
superconductor physics by the ‘Josephson effect’, in which
electrons from a superconducting metal tunnel through a
thin layer of insulating material and produce current in the
ordinary metal on the other side.! The tunneling decreases
when the thickness of the insulating layer is increased. A
similar manifestation of the quantum tunneling phenom-
enon occurs as electromagnetic radiation tunnels through a
small gap in the material through which it is propagating.
When visible light is incident on a crystal prism, the prism
can be oriented such that the total internal reflection of
light occurs, none of it escapes through the opposite side
of the prism. Experiments 2.3, however, show that when a
second prism is moved in close proximity to the first, such
that the gap between them is on the order of the wave-
length of the incident light, photons are able to tunnel
through the air gap and propagate into the second prism,
thus ‘frustrating’ the effect of total internal reflection.

The fraction of the total incident radiation that gets
transmitted directly through the opposite side into the
second prism, called the transmissivity, 7, is given by:*

Joel is a physics major at the University of Southern
Mississippi. This research was done during his junior
year as part of the required undergraduate
curriculum. He currently is planning to attend
graduate school to study thermodynamics. In his
spare time, he enjoys cyclingt, kayaking, card games
and swapping jokes with classmates and co-workers.
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is a constant depending on the refractive index of the
prism, n, the wavelength of the incident radiation, A, and z
is the gap size. The constant A in Equation 1, in addition
to being a function of n, is also dependent on the orienta-
tion of the electromagnetic fields of the incident waves
with respect to the prism edges. When the electric field is
oriented such that it oscillates at a constant angle with
respect to the slanted surface of the prism (as shown in the
Figure 1a), it is considered to be the Transverse Electric
(or TE) orientation. If the orientation of the incident
electric field is rotated 90°, such that the magnetic field
oscillated parallel to the slanted surface, it is called the
Transverse Magnetic (or TM) orientation (see Figure 1b).

TE Waves
(a)

Figure 1
Schematic diagram showing the two polarizations: (a) the
TE mode (electric field oscillates in and out of page); (b)
the TM mode (electric field oscillates as shown).
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The expressions for A for these two orientations are given where d is the distance between the entrance point and exit

by: 4 point of the beam and L is the length of one side of the
N cube. The results are shown in Tablel. The index, n, is
n’—1 independent of the polarization of the microwaves.
A p
TE

4 n*cos’ B, (’ sin” 0, - l] We arranged the transmitter and the receivers at 90” angles
) with respect to the prisms as shown in Figure 3. One
) receiver was positioned to intercept the reflected portion of
the signal, /,, while the other received the transmitted
portion, /. The distance from each receiver to the first
diagonal face was the same. From the receiver readings,
we obtained the transmissivity, T :

A=A [(nz - l)sin2 0,- 1],

where 0; is the angle of incidence of the electromagnetic
beam on the prism. If ©; is conveniently chosen to be 45°,
Equations 3 become:

[flz - l]2 T= I, . (6)
Ap=—— 1+1,
n {nz - 2)
(,,2 = 1)‘ We began our data taking with the transmitter and receiv-
A =—5T7 (4) ers set to the TE polarization mode and set the gap size z =
4n (“’ = 2) 2.4 cm. Values of I, and I, were recorded. z was then
decreased in 2 mm increments until the two prisms
THE EXPERIMENT lm{(:h-ed. ‘We repeated this procedure 5 times for each
. z : polarization.
For our experiment, we used the commercially available
Pasco Gunn diode microwave transmitter and receiver. RESULTS AND DISCUSSION

The output wavelength of the transmitter is 2.857 cm. The
advantage of using this macroscopic wavelength is that
the size of the gap between the two prisms (where the
tunneling occurs) is easily measured and controlled. In
the previously mentioned experiments using visible light,
special equipment was required to measure the gap size,
which could be as small as one wavelength: 500 to 700
nanometers.

Our results are shown in Figure 4 for both polarization
modes. The solid lines are the theoretical results using
Equation 1 and the values from Table 1. The theoretical
curves matched the data for the 7E waves quite well. For
the TM waves, however, the theoretical values were larger
than the experimental values.

We noticed that the value of /; never became zero, even
when z was extended to lengths where total internal
reflections should occur. There are a couple of possible
explanations for why this occurred.

We obtained two (45,45,90) paraffin prisms 30 cm along
the sides by making wooden molds of he appropriate
shape and filling them with molten parafin wax. Using a
carpenter’s plane, we honed the hypotenuse side of each
prism so that the two fit together almost perfectly to form
acube. This assembly was then used to determine the
index of refracdtion using aluminum foil to mask all but a
2 cm wide angular aperture on the microwave transmitter.
The beam was aligned at an incident angle of 30° as
shown in Figure 2. We detected a three-lobed diffraction
pattern due to the aperture mask on the opposite side of L
the paraffin block. We took the middle of the center lobe
to be the exit point and located that point. The index of
refraction is obtained through Snell’s law:

LY
- l;(“') , )

One possible explanation for the non-zero value of 7, lies
in the quality of the prism material. The prism was made
by melting paraffin and pouring it into a mold, thereby
aerating the molten liquid , producing tiny air bubbles in

n=1.56+0.02
b=1.02+£0.01 Arg=1.95£0.05 Ay = 1.020.1

Table 1 Figure 2
Values for the constants (from Equations 2 and 4) used in Schematic diagram of paraffin blocks showing how we
the curve fits of Figure 4. measured the index of refraction
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the finished product. These bubbles, although not large
enough to alter the path taken by the microwave, may have
produced tiny areas that offered very little impedance to
the incoming electromagnetic wave, resulting in a slightly
higher transmissivity than predicted. These bubbles might
be particularly troublesome when they happen to be
located on the reflecting surface of the prism. The
plausibility of this explanation is reinforced by one of our
earlier experiments where we used a prism consisting of a
thin foam-board container of the appropriate shape filled
with polystyrene pellets. This method resulted in innumer-
able air gaps between the pellets. The transmissivity was
so high that is made small changes in the reflection and
transmission difficult to observed. An identical experi-
ment using polyethylene pellets yielded similar results and
forces us to abandon this type of prism in favor of one
made of solid paraffin.

A possible explanation for the persistent nonzero reading
for I, is that the transmitters and receivers were equipped
with horns that spread the signal at approximately 30° for
the TE mode and 60° for the 7M orientation. This made it
possible for part of the signal to enter the incident face of
the prism at an angle of other than 90° and strike the
slanted face of the prism at an angle less than the critical
angle for total internal reflections, thus transmitting the
signal to the second prism.
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Figure 3
Experimental Configuration. T is the microwave
transmitter. The upper receiver R records the reflected
intensity, the right receiver records the transmitted
infensiry.
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Figure 4
Transmissivity versus Gap Size. The solid lines are the
corresponding theoretical curves given in Equations 3.
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ABSTRACT
An experimental study of stick-slip friction was conducted using sandpaper and paper towels. This
study models stick-slip friction earthquakes. A block with sandpaper on its bottom was fixed to a strain
gauge by means of a spring. A paper towel was pulled beneath the block, stretching the spring, while
the position of the block was monitored with a linear displacement gauge. Readings from the strain
gauge and linear displacement gauge then were used to determine the energy released when the block
slid backwards. Analysis of the data suggests that the interaction of the sandpaper with the paper towel
depends on both the sandpaper grit size and the surface roughness of the paper towel.

INTRODUCTION
Earthquakes can cause severe social and economic impact
on communities. While it is unknown if earthquake
prediction will ever be possible, a better understanding of
what earthquakes has been developed. Production of
stresses in adjacent plate regions is the ultimate cause of
earthquakes. The varying stresses cause the Earth’s
surface to move differently. The most common cause of
earthquakes is the breaking of rocks beneath the surface of
the Earth due to various geological forces. ! Volcanic
theory proposes an explanation based on explosive
chemicals or the sudden stoppage of magma flow 2
Earthquakes also can be caused by cavern and mine decay,
massive landslides and the detonation of nuclear weapons
can trigger an earthquake. 3

One type of earthquake is caused by the motion of tectonic
plates along fault lines, such as occurs along the notorious

Jason has completed his undergraduate degree in
physics at Mansfield University. He is currently
pursuing his master’s degree in mechanical
engineering at Lehigh University. When Jason is not
in the lab or in the library studying for a test, he likes
to spend time playing basketball and lifting weights
with his fellow classmates.

San Andreas Fault. For earthquakes of this type, which
occur in other parts of California and Japan, the Earth’s
tectonic plates move both horizontally and vertically in
measurable amounts. 2 This motion gives rise to the
phenomenon known as stick-slip friction. Stick-slip
friction is the cyclic transition from static friction to
kinetic friction at slow speeds. The condition lasts until
enough shear stress is built up to overcome the static
friction, allowing the surfaces to break apart. During this
process of separation, one surface slides back and releases
energy. 4

A previous study of stick-slip friction suggests that the
greater the surface roughness, the longer the time elapsing
between the slip events and the greater the energy buildup
and subsequent energy release. 5 Based on this, it is
expected that the degree of surface roughness and the
energy release during the earthquake are related since the
building up of the shear force continues until the static
frictional force is overcome and the sliding begins.

THE EXPERIMENT
The apparatus used to model the stick-slip friction is
shown in Figure 1. A seamless paper towel was pulled
across the track at an average speed of 0.5 mm/s by a
constant angular speed motor. This speed was chosen so
that so that small slip-events would not be missed.
Resting on top of the towel was an aluminum block with
sandpaper glued to the bottom. This block was attached to
a strain gauge by means of a spring. A linear displacement
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Figure 1
A schematic diagram of the stick-slip friction apparatus: (1) paper towel roll; (2) paper flattening rollers; (3) support
frame; (4) strain gauge; (5) spring; (6) metal block with sand paper bottom; (7) linear displacement gauge; ( 8) paper

collector spool and motor; (9) polished track.

gauge was used to measure the position of the block. As
the paper towel was pulled from left to right (see Figure 1),
the block was pulled along until the spring restoring force
was sufficient to overcome the static frictional force.
When this occurred, the block slipped back.

The strain gauge was used to determine the equilibrium
position of the block and to establish the linearity of the
spring restoring force with spring stretch. The linear
displacement gauge was used to determine the position of
the block. The output voltage from the linear displacement
gauge was sent Lo an analog to digital data acquisition card
in a computer. Data for a given run were acquired every
0.2 s for a total sampling time of 500 s. This sampling
time was chosen for several reasons. As more paper towel
accumulated on the collector spool, its radius increased.
The motor shaft driving the collector spool rotated with
constant angular speed, so this increase in radius resulted in
an increasing translational speed of the paper towel passing
beneath the block as the paper towel moved. The sampling
time was kept short to minimize the variation in the speed
of the paper towel. A longer sampling time would also
affect the sandpaper and paper towel. Preliminary runs
revealed a build-up of paper towel on the sandpaper for
longer sampling times. A sampling time of 500 s did not

Grit Number Abrasive Particles
Average Grit Diameter (um)
150 93.0
180 78.0
240 53.5
360 28.8
400 23.6
600 16.0
P1000 12.6
P1500 10.3
1000 9.2
Table 1

Average size of abrasive particles for the various
sandpaper grit numbers 6 used in this study.

eliminate this build-up, but it did minimize it.

The surface roughness was varied by using sandpaper of a
variety of grit numbers, ranging from 150 to 2000.
Sandpaper grit number is a measure of the size of the
abrasive particles attached to the sandpaper backing. Low
grit number sandpaper has larger abrasive particles, so it is
coarser than high grit number sandpaper. Table 1 shows
the different sandpaper grit numbers used in this study and
the corresponding abrasive particle sizes. 6

The sandpaper beneath the aluminum block was replaced
with a new piece after two runs. Block positions versus
time for twenty runs (10 new pieces of sandpaper) were
acquired for each of the grits listed in Table 1. Data from
the odd numbered runs (the ones with the fresh sandpaper)
were compared with data from the even numbered runs
(second time around for the sandpaper) to determine if the
paper towel buildup was affecting the results. No signifi-
cant difference between runs was observed, indicating that

4.6
4.5
o &
. 44 ®D
5| o
< o
g 434
£
[
3
b o
A a1
1 o
4
39 T i 1
> 7 g 7 g
Time (s)
Figure 2

Block position as a function of time for the first 40 s of a
run using 240 grit sandpaper.
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the sandpaper and paper towel interactions for all runs of a
given sandpaper grit number were similar.

DATA AND ANALYSIS
The position versus time data from each run were analyzed
to determine when the slip events took place. A plot of
block position versus time for the first 40 s of a run for the
240 grit sandpaper is shown in Figure 2. The peaks
represent the maximum spring stretch prior to slipping.
The valleys are when the block has slid back maximally.
The difference in energy between the peak spring stretch
and the valley spring stretch is the energy released when
the block slid back. A sorting program was written and
used to determine when slip events occurred and to
calculate the energy released during such events. The slip
energies for each run for a given sandpaper grit number
were combined into a single data set. Another program
then was used to sort the data into bins so that a histogram
of the number of slip events as a function of slip energy
could be made. Figure 3 shows the number of slip events
as a function of the energy for the 240 and 360 grit
sandpaper. The decrease in the number of slip events with
increasing slip energy was observed for all sandpaper grit
sizes tested.

The shape of the histogram plots shown in Figure 3
suggests an decreasing exponential dependence of the
number of slip events in the increasing slip energy. In
keeping with the tradition that base 10 logarithms are used
in earthquake studies, the data were fit with an exponential
of the form:

N=N,10 £, (D
where N is the number of slips, No and o are curve fit

2000

O 240 Grit

+ 360 Gnt

1500 =

Number of slip events

Energy

Figure 3
Number of slip events versus the energy released per slip
for 240 (open square) and 360 (cross) grit sandpaper.

+ 360 Gnit

1000 Gnt

Logarithm of the number of slip events

15
20

Energy

Figure 4
Logarithm of the number of slip events versus the energy
released per slip for 360 (cross) and 100 (open circle) grit
sandpaper. The lines shown are linear fits to the data
points.

parameters, and E is the slip energy. If the functional form
of Equation 1 adequately describes the histogram plots in
Figure 3, a plot of logo(N) versus £ should yield a line
with a slope equal to -ct. The semi-log plots for the 360
and 1000 grit sandpaper, shown in Figure 4, support this
dependence. The straight lines shown in Figure 4 are
linear fits to the data points.

0.35
0.3 -

0.25

0.2+ §
015 )
¢ §E ¢

2 & A = 8

Average grit diameter (um)

Figure 5
Plot of the a values versus the average grit diameter
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Figure 6

Total number of slip events versus the average grit
diameter.

We expected that the rougher sand paper (that with lower
grit number and larger average abrasive particle size)
would have more large energy slip events than the
smoother sandpaper. If this were true, then o would be
smaller for the large grit sandpaper than for the small grit
sandpaper. A plot of the o values as a function of average
grit diameter is shown in Figure 5. The sandpaper with the
largest particles did have a smaller value of a than the

2.5
= ]
g =
£ ]
§ s
o O O ]
a O
w
é— 1 O O
%
g
4
<« 0.5
O
0 T T T
= & A 2 8
Average grit diameter (pm)
Figure 7

Plot of the average slip energy versus the average grit
diameter.

sandpaper that had the smallest particles, but the middle
grit sized sandpaper generally had the smallest o values.

More insight into what may be happening can be gleaned
by examining Figures 6 and 7. In Figure 6, the number of
slip events as a function of abrasive particle size is plotted.
The number of slip events follows a trend similar to those
observed in the a values. The average energy released for
each slip event is plotted as a function of abrasive grit size
in Figure 7. Sandpaper with midsize grit particles results
in larger average slip energies than sandpaper with finer
and coarser grit

One possible explanation of the behavior seen in our
results is that the interactions of the sandpaper with the
paper towel depends not only on sandpaper grit size, but
also on the surface roughness of the paper towel. The
paper towel used was not perfectly smooth; it contained
randomly spaced paper fibers as well a regularly spaced,
but randomly high protrusions. Three possible interaction
systems are illustrated in Figure 8. The course sand paper
had particles that may have been too large to effectively
interact with the crevices in the paper towel. The fine
sandpaper had abrasive particles that may have been too
small to fit in the paper towel crevices. Finally, the mid-
ranged sandpaper abrasive particles may have been just the
right size to fall into the voids between the paper fibers.

It is unclear if the results of this study can help to shed

Particle size too large for interaction

Particle size allowing for interaction

0000000000 00000000000000

Partick size too small for interaction

Figure 8
Diagram showing the three possible scenario for
interactions between the sand paper abrasive particles and
the paper towel.
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light on what happens during real stick-slip earthquakes.
It is interesting, however, that the distribution of slip
events in this study obeys the same exponential law that is
observed for real earthquakes. 7
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ABSTRACT
The “cosmic ring kinetic mobile’ is a device that involves a systems of weights and rings, hung at
angles to produce visually stimulations motions, that is driven by a electromagnet. We simplify the
system by considering the behavior of one of the rings and arrived at a system of equations that
describe the motion. Properly chosen coordinate transformations make it possible to understand the
motion in a mathematically simple manner. We derive the equations of motion, a set of nonlinear
coupled second order differential equations, and present numerical results obtained by considering
various limits of the motion, as well as the full set of equations. The limiting forms of the equations are

harmonic.

THE MODEL
The kinetic mobile, shown in Figure 1, is a deceptively
simple looking device, arranged with increasingly smaller
rings attached to a string by a thin wire, each hanging at a
certain angle. In the middle of all of the rings is a spheri-
cal weight. At the bottom of the sing is a conical electro-
magnet that drives the motion, compensating for the drag
force. These rings spin complicated patterns. To model
their entire motion is very complex.

Instead, we model the motion of a single ring as shown in
Figure 2. The curved piece of wire connecting the ring to
the string is assumed to be massless, so we need only
consider the affects of the string on the ring. No external
forces, such as the driving or drag forces are considered.

The Inertia Tensor

To obtain the equations of motion of the system, we first
determine the moment of inertia tensor. As the ring does
not lie on or spin aboul its principle axis, we have calcu-
late all the elements of the tensor. We calculated the

Brian is a junior at the State University of West
Georgia, and a senior at South Gwinnet High School.
He plans to major in mathematics. This research
project began during the fall semester of his freshman
year. He is currently preparing this project for a
poster session of the National Collegiate Honors
Council and another project for the AMS meeting in
January. In his spare time, he can be found tutoring
students and hanging with his friends.

inertia tensor in ‘body coordinates’ and write the torques
and angular acceleration in a rotating coordinate system

Figure 1
A picture of the actual ‘cosmic ring kinetic mobile’ (see
reference 6)



20 THE JOURNAL OF UNDERGRADUATE RESEARCH IN PHYSICS VOL 19, #1
Lever Force cosd 0 sind
A=| 0 1 0 |, 2)
—-sing 0 cos¢d

Figure 2
A one ring system used as a simplified model of the full
system shown in Figure 1

which we call ‘world coordinates’, then finally rotate the
torque and acceleration back to ‘body coordinates’ to
obtain the equations of motion.

The moment of inertia of the ring in body coordinates
(along the principal axis) is: !

pj (2 +2%)av 0 0
I,= 0 pJ. (22 +2%)av 0 (1)
0 0 pj (f +y3) dv

The ‘body coordinates’ are those for which the ring is
placed “flat’ on the x-y plane. The moment of inertia in
world coordinates would have non-zero off-diagonal
elements in the matrix. Fortunately, the body coordinates
of the moment of inertia tensor is all that we will need.
Both the body and the world coordinate systems are shown
in Figure 3.

To transform between the two coordinate systems ! on¢
uses the orthogonal rotation matrix given by:

Equation 2 is the form for a rotation about the y-axis by
angle ¢.2

The torque, T, the inertia tensor, /, and the angular accel-
eration, o, can be written as:

T=AT, L=A-1-A, 0,=A-G 3)
where the subscript w stands for the world coordinates and
the subscript b stands for the body coordinates.

(a) world coordinates

(b) body coordinates

Figure 3
An illustration of the difference between body and world
coordinates. (a) world coordinates. (b) Body coordinates
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Due to the symmetry of the ring, the diagonal components
of 1, (Equation 1) can be calculated using cylindrical
coordinates (x = r cosB, y = rsin@):

h n ra 5 3
[!b)uzj; L L (y~+z)rdrd9dz

T h"[rf —~ r,z) h (rz‘— ri‘)
3 T3

h ix ry
(!,,)22 = .[. J; L (f + z“} rdrdddz

4)

T h3(r32 = rlz} nh (rz"— r,*)
3 * 73

h x ra
=] [ ['teerlracnes

_h_L?__)]

=p

»

where r; and r7 and the inner and outer radii of the ring, &
is the thickness of the ring, p is the density (assumed to be
constant) and:

p=, V=nh(r’-r?) (5)

Equations 4 can be combined with Equation 5 to give the
moment of inertia in the body coordinate system:

2 2 2
(e I 0
2 2 2
[ = 0 m("’ﬂ%) 0 . (6)

Equations of motion

The string exerts two torques on the ring: a torsional
torque, ttors, in the z-direction and ‘lever torque’, tlever, to
keep the ring in its upright position. The torsional torque
is modeled in terms of Hooke’s Law for spring motion.?

In world coordinates:

0
T.'ors.w = 0 i (7)
To transform the torsional torque into body coordinates

one must use the adjoint of the rotation matrix (Equation
2):

k0 sin(¢)
T =M T = 0 | (8)
— k6 cos(d)

As the ring rotates, a torque is applied to change ¢ from its
initial position ¢y, the string reacts in the opposite way.
Once again, we model this torque in the form of Hooke’s
Law:

0
T = [~ k0= 0,) | )
0

Transforming this torque to body coordinates:

0
Trrers =N T = [~ k0 - 0,) | (10)
0

The net torque in the body coordinates acting on the ring is
the sum of torques in Equations 8 and 10:

k0 sin(¢)
T =| —ko(0-0,) | (11
— k0 cos(¢)

According to Newton, the net torque is the time rate of
change of the angular momentum:

Toed = %. (12)
where:

L=1,- o, (13)
and:

o, =A',. (14)

The angular velocity in the world coordinate system is
given by:

¢(0) =n/3 $’(0) =2

8(0)=5 0'(0)=3

ky=.001 ka=.1

r =.0500 ry=.0495

m= .05 h = .005
Table |

Numerical values for the various parameters used in the
numerical solutions.
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Figure 4
A graph of it) as a function of time. Points are those
produced by the numerical solution to Equation 22a.

0

— _|do

do
dr

where ¢ and 0 are shown in Figure 3. Transforming the
angular velocity to the body coordinate system:

. de
T (Sl; ¢)E
g=| 2 | (15)

(cos ¢)%

Combining Equations 11-16, we find that:

§ ¥ T v T -

Figure 5
A graph of &(t) versus time. The points are the numerical
solution to Equation 22b using the values in Table 1.

(f,,)“ {cos¢ d¢ ‘é? + sind d 9}

% - (1) 52 :

b g
gt_zngh %
(1), {smtb H-EB- %? —cos %;?}

k0 (sin §)

~k{6-9,) |
— kO (cos )

(16)

where (1)1}, (Ip)22, and (I)33 are the diagonal elements of
the moment of inertia tensor shown in Equation 6. From
the three different expressions for the net torque in
Equation 16 we can extract the equations of motion of the
rng:

(sin q;}( ) —cosq:%%-smq:d 5 a7
b
u,} o-0)=- 58 o
22
(cos §) (,b]“ 0 =sind ‘f: ‘jf? (19)

The equations of motion are a coupled, second order
nonlinear system of equations. However, there are three
equations for only two variables. The non-linear term in
Equations 17 and 19 can be eliminated by multiplying
equation 17 by sin¢ and Equation 19 by cos¢ and subtract-

ing:

Figure 6

A graph of % versus time.
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429 sin“¢ cos‘¢» 0.
(20)
{(‘fb)n (!b]n }
or:
da’e _ 1 i
= ¢| +-——\0 21)
dr ((f b)l 1 ("b) 3 ) (ib)as

So, the equations of motion of the system become:

- ¢ (Ib)zz{tb ¢)

dr (222)

(("b)u [b)u)smq"“( ')M 0 (22b)

Note that Equation 22a is the simple harmonic oscillation
equation.

429

Special cases of the motion
Equation 22a is the simple harmonic oscillator equation.
The solution is of the form:

o0=[4 (OJ]\/ R sm(\/g r)+§ @3)

Equation 22b can be linearized by making assumptions
about ¢(r). If ¢(r) varies so slowly or the amplitude term
in front of the sine function in Equation 23 is very small,
it can be considered a constant. Then, using the values of
the parameters shown in Table 1, equation 22b can be
written as:

Figure 7
A graph of the full numerical solution of 0°(t) versus time
(solid) and the limiting case version of the second time
derivative of Equation 25 (dashed).

k, 1
== ——19, (24)
4 ((‘(ﬁ)u [!b)n)
a harmonic oscillator with the solution:
do
dr©
6() = —sin(k, ) + 6(0) cos (k 1), (25)
3
where
(26)

sS4

However, to understand the proper motion of this system,
we investigate them using numerical techniques.

RESULTS
We generated numerical solutions of Equations 22 using
Mathematica 4 and Matlab6 5. A listing of the programs
capable of generating Figures 4-7 are shown in appendix 1
for Mathematica and Matlab.

To eliminate numerical instabilities, the absolute error
tolerance and the relative error tolerance were both set to
107 for Matlab. The mathematica graphs use the default
tolerances. We note that Mathematica and Matlab were
consistent with each other.

The constants k; and k2 were picked arbitrarily. However,
we know that k; is several orders of magnitude smaller
than k> because the torsional torque is much smaller than
the lever torque. The values of the constants we used in
the numerical calculations are shown in Table 1. The
results of the numerical calculations are shown in Figures
4-8.

Notice that ¢(t) is not affected by the motion of 6(1),
because Equation 22a does not depend on 8(#). Thus, the
results shown in Figure 4 are harmonic. However, 0(1)
depends on the value of ¢(t) . Figure 5 shows the results
of our calculations for 8(r). The motion of @ is visually
smooth and continuous, and seems sinusoidal. Closer
examination reveals that is not exactly harmonic. This
anharmonic property can be seen more clearly by examin-
ing the first and second derivatives of 8(¢) which are
shown in Figures 6 and 7. Notice that 8’ and 6" show
anharmonic characteristics overlaid on a general harmonic
shape. The reason for this is that the coupled motion of ¢
and 0. The anharmonic oscillations are caused by the non-
constant term in front of 6 in Equation 22b. This varies
the amount of torque, changing the shape of 8(t) from
being harmonic. The variation is small because of the
choice of values of k; and k2. The dotted line in Figure 7,
the graph of 8”(1), is the graph of the simplified solution
presented by Equation 24.
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Figure 8

Multiple plots of 6” versus t for several values of initial 6
(a) 8°(0) = 0; (b) 6°(0) = 3; (c) 8”(0) = 6.

Our experience with the k; and k; parameters is that their
different values affect not only the period of their associ-
ated motions, but also the anharmonic terms. By decreas-
ing k;, the anharmonic terms seem Lo increase. This is
similar to what happens in Figure 8, which will be
discussed later, but for a different reason.

In Figures 5 and 6, the only qualitative difference between
the numerical solutions and the simplified analytical
solution is the change in the period of the oscillations. The
difference is, however, not discernible from the figures.
The anharmonic motion of 6(t) can be eliminated by
changing the initial angular velocity of ¢(z). 1f ¢’(0) =0,
then ¢(¢) is a constant, and as in the simplified case, the
anharmonic components disappear and 0(t) becomes
harmonic. When the initial angular velocity of ¢ is
increased, the variations of ¢(t) increase and the motion of
0(r) becomes more anharmonic. This is illustrated in
Figure 8.
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APPENDIX 1
This appendix contains the specific commands used in the
numerical computation of the solutions to Equations 22
with the parameters given in Table 1.

A) The Mathematica Program listing follows. For
simplicity, we have employed the following changes of
variables: t -> x, ¢ >y, and 0 -> z.

m=.05; h=.005; r2=.05; r1=.0495; k1=.0001; k2=.03;
Ixx = m*(1/3*h"2+1/4*(r2/2+4112));

Iyy = m*(1/3*h 2+ 1/4*(12°2+11/2));

Izz =1/2*m*(r2"2+r1"2);

k3 = (k1/4*(3/1xx)+1/1zz)) (.5);

zprime( = 3; yprime0 = 2; y0 = Pi/3; 20 = 5;
solution=NDSolve[{y”[x] == -k2/1yy*(y[x]-Pi/3),

z”[x] == -k1((1/Ixx -1/1zz)*Sin[y[x]]"2+1/1zz)*z[x],
y[0] == 0, y* [0] == yprime0, z[0] == 0,

z'[0] == zprime0}, {z,y}, {x,0,100}, MaxSteps->50000,
Method -> RungeKutta]

simplified[x_] := yprime0/k3*Sin[k3*x] + z0*Cos[k3*x]

Plot[{ Evaluate[y[x] /.solution]}, {x, 0, 1}]
Plot[Evaluate[z[x]] /.solution], {x, 0.1, 5},

PlotStyle -> { {RGBColor[0, 0, 0]}, RGBColor[0, 0, 1],
Dashing[{0.01, 0.005}]}}]

Plot[Evaluate[z"[x]] /.solution, simplified”[x]},
{x,0.01, 5}]

PlotStyle -> { {RGBColor[0, 0, 0]},RGBColor[0, 0, 1],
Dashing[{0.01, 0.005}]}}]

B) The Matlab Program listing “kmprojPAPER.m" folows
below. Note that the separate function kmprojfuncdtion.m
is also included.

YekmprojPAPER.m

%Set the parameter values

m=.05; h=.005; 12=.05'r1=.0495; k1=.001; k2=.1;
Ixx=m*(1/3*h"2 + 1/4*(r2"2+r12));

Iyy=m*(1/3*h"2 + 1/4*(r2"2+11"2));

Izz=m*1/2%(r2"2 + r1*2);

k3=(k1/4*(3/Ixx + 1/1zz))".5;




VOL 19, #1 THE JOURNAL OF UNDERGRADUATE RESEARCH IN PHYSICS

25

%Set the initial conditions
xinit=[pi/3;5;2:3];

%Integrate the system of O to 5
ODEOaraneters=odeset('RelTol’,1e-7, “AbsTol’, le-7);
[t,X]=0de45("kmprojfunction’,[00 5],xinit,
ODEParameters,Ixx,lyy,Izz.k1,k2);

GoPlot theta(t)

figure;

Simplified=3/k3*sin(k3*t) + 5*cos(k3*1);
plot(t,X(:,1));

plot(t,Simplified,r:");

%Plot theta’(t)

figure;

Simplified=3/k3*sin(k3*1) - 5*cos(k3*t);
plot(t,X(:,4));

plot(t,Simplified,r:");

%Plot theta” (t) and the simplified theata”(t)

figure; hold on;

Simplified=-k372*(3/k3*sin(k3*t) + 5*cos(k3*1));
Actual=-kI*((1/Ixx-1/1zz)*sin(X(:,1)).22)+1/1zz).*X(:,2);
plot(t,Actual));

plot(t,Simplified,r:");

%oPlot phi(t)
figure;
plot(t,(X:,2));

Jokmprojfunction.m
function xp=f(t,x,y0,Ixx,lyy,Izz,k1,k2)
Xp=X;
y=x(1); z=x(2);
=x(3); g=x(4);
xp(1)=p;
xp(2)=q;
xp(3)=-k2/lyy*(y-pi/3);
xp(4)=-k 1 *((1/Ixx-1/1zz)*sin(y)"2)+1/Ixx)*z;
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JURP goes on-line ... the end of production evolution.
Rexford E. Adelberger, Editor

The production of JURP has gone through many stages of
evolution during the past 20 years. When, in 1981, the
AIP executive board approved the founding of the Journal
of Undergraduate Research in Physics as the Journal of the
Society of Physics Students and its honor society Sigma Pi
Sigma, a small grant was given to purchase an Apple Il
computer and an impact printer.

The original word processor used to format the articles is
now an antique. It sits on a shelf to become part of a
museum. It had no spell checker, no equation editor and
no graphic capabilities, but could fit on two 5 inch floppy
disks. The hard disk in the Apple was so small that you
had to change floppies to store the articles. The graphics
were all formatted by hand, using a drawing board and an
ink pen. It was a good thing that the editor had taken
mechanical drawing in high school. During this time, the
editor learned how difficult it is to proof read your own
work. Once the copy was thought to be in proper English,
the text for the articles was printed out in 4.25 inch wide
columns and pasted onto a large sheet of paper in two
column format. The equations were entered using press-
on letters, and the graphics pasted into their appropriate
places. The large story boards were then photographed,
etched and printed.

After the first 5 volumes were produced, the production
equipment was upgraded to a MacIntosh computer. The
what-you-see-is-what-you-get format of the new word
processor that could handle text, graphics and equations in
a somewhat seamless manner was exciting and fun to use.
The editorial office also purchased its first scanner and
laser printer. It was truly amazing to the editor that he
could scan in figures, and then use graphics software to
modify and clean up the images. The pages of the journal
now could be printed in photo-ready format with no need
to paste various pieces of the copy into a story board.

The subscription list consisted of about 200 libraries and
various individual subscriptions. The subscription list
was kept on the same computer that produced the copy.
Individual address labels were printed, and with the help
of the editor’s wife, were placed on the individual copies,
each copy was sealed with tape, and then taken to the bulk
mail area of the college’s mail room. A large mailing
consisted of about 700 copies.

As the editor also a professor of physics in a small liberal
arts college, he received support from the college in the
production of the journal. The college handled all of the
financial record keeping and provided some of the costs of
maintaining the editorial office a Guilford. This meant
that the editor had to learn something about accounting, so

that he could figure out how to read the balance sheets, etc.

It became clear to him that accountants have a language
and mathematics all of their own,

The editorial office moved with the editor as he went on
sabbatical. Early on, one volume was produced on an old
all-in-one MacIntosh computer in the city of Starnberg,
Germany. The editor would format the copy while
overlooking the alps and the Starnberger See. A Guilford,
physics student, Dail Rowe, acted as business manager and
handled the mail correspondence that came from Germany
and all other things. A second time, the copy was edited
and produced in the town of Kula on the slopes of
Haleakala overlooking the paradise known as Maui. Again
a Guilford physics student, Ari Betof, acted as business
manager and ran the office at Guiford College. This time,
communications were easy as the internet was available
and very fast.

In 1987, the Society of Physics Students decided to send
all members of the society a printed copy of the Journal.
The production runs went from a few hundred to a
maximum of 8 thousand. The mailing lists could no
longer be kept at Journal office at Guilford College and
labels printed. A bulk mailing service was used to send
out the copies. Still another new skill had to be learned.

Then, yet another learning opportunity occurred; the old
word processor that the editor finally mastered, was no
longer supported. He had to start looking at other software
systems to produce the copy. After many frustrating
attempts to use WORD and WordPerfect to format the
Journal, the decision was made to adopt PageMaker as the
word processor. There were a couple of interesting
consequences of the adoption of this word processor.

First, and perhaps the most important at the time, was that
the copy could be sent electronically to the printer. There
no longer was a need to produce a hard copy that had
photographed so that the journal could be printed using the
off-set method.

The second is that it became possible to easily produce a
copy of the Journal in pdf format. This made it possible to
place old copies of the Journal in pdf format on a web
page. The web page of the Journal is maintained by the
American Institute of Physics and can be found at:
http://www.JURP.org

At this time, the journal is no longer sent to each member
of the Society of Physics Students. The current issue is
still produced in a hard copy format that is sent to libraries
and those individuals who subscribe to it.

The production of JURP is a mirror of the upgrading of a
physicist, from an experimentalist who interfaced comput-
ers into nuclear counting experiments to a semi-skilled
desk top publisher. Now that the editor of JURP is
approaching his dotage and retirement as a teacher, he is
also looking forward to gaining a few hundred hours per
year when someone else takes over JURP and moves it to
the next level.
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PREPARING A MANUSCRIPT FOR PUBLICATION
Rexford E. Adelberger, Editor

Perhaps the most important thing for you to keep in mind when
you write a manuscript which you intend to submit for publica-
tion to the Journal of Undergraduate Research in Physics is that
the audience that will be reading the paper is a junior or senior
physics major. The readers are knowledgeable about physics, but
unlike you, they have not spent as much time trying to under-
stand the specific work that is being reported in your paper. They
also can read English well, and expect the paper to be written by
a colleague, not a robot or an ‘all-knowing' computer. There is a
big difference between the comments you write in the margin of
your lab notebook, or what you might write in a technical brief,
and what you should present in a paper for publication in a
scientific journal.

There is a significant difference between a Journal article and
keeping a journal. Your laboratory data book should be the
journal of what you did. It contains all the data, what you did
(even if it was an attempt that turned out to be wrong), as well as
comments as to what you were thinking at that time. The Journal
article is an discussion of how you would do the research without
excursions along blind alleys and hours spent collecting data that
were not consistent. The reader does not have to be able to
completely reproduce the work from the Journal article. The
reader should be able to understand the physics and techniques of
what was done.

The general style of writing that should be followed when
preparing a manuscript for publication in the Journal is different
from what you would submit to your English literature professor
as a critique of some other work. The narrative of the paper is
intended to do three things: 1) present the background necessary
for the reader to appreciate and understand the physics being
reported in the paper; 2) discuss the details of what you did and
the implications of your work; 3) lead the reader through the
work in such a way that they must come to the same concluding
points that you did. When finished with your paper, the reader
should not have to go back and try to decide for themselves what
you did. Your narrative should lead them through your work in
an unambiguous manner, telling them what to see and understand
in what you did. The interpretation of the data or calculations
should be done by the writer, not the reader. The interpretation of
your results is the most important part of the paper.

You should take care to make sure that the material is presented
in a concise logical way. You should make sure that your
sentences do not have too many dependent clauses. Overly
complicated sentences make the logic of an argument difficult to
follow. You should choose a paragraph structure that focuses the
attention of the reader on the development of the ideas.

A format which often achieves these aims is suggested below:

ABSTRACT : An abstract is a self contained paragraph that
concisely explains what you did and presents any interesting
results you found. The abstract is often published separately
from the body of the paper, so you cannot assume that the reader
of the abstract also has a copy of the rest of the paper. You
cannot refer to figures or data that are presented in the body of
the paper.

How a person uses Journal articles to find out about new ideas in
physics is often done in the following way. A computerized
search, using key words in abstracts, is performed to find what

work others have done in the area of interest. If the abstract
seems o be about the question of interest, the body of the paper
is tracked down and read. If the reader then wants to find out the
finer details of how to reproduce the experiment or the derivation
of some equation, the author of the paper is contacted for a
personal in-depth conversation about the more subtle details.

INTRODUCTION: This is the section that sets the background
for the important part of the paper. It is not just an abbreviated
review of what you are going to discuss in detail later. This
section of the narrative should present the necessary theoretical
and experimental background such that a knowledgeable
colleague, who might not be expert in the field, will be able to
understand the data presentation and discussion of results. If you
are going to use a particular theoretical model to extract some
formation from your data, this model should be discussed in the
introduction.

Where appropriate, factual information should be referenced
using end-notes. When presenting background information, you
can guide the reader to a detailed description of a particular item
with the statement such as: "A more detailed discussion of
laminar flow can be found elsewhere 1". 1f you know where
there is a good discussion of some item, you don't have to repeat
it, just guide the reader to the piece.

How one proceeds from this point depends upon whether the
paper is about a theoretical study or is a report on an experiment.
We will first suggest a format for papers about experimental
investigations and then one that describes a theoretical deriva-
tion.

Experimental Investigations
THE EXPERIMENT: This section guides the reader through
the techniques and apparatus used to generate the data. Sche-
matic diagrams of equipment and circuits are often easier to
understand than prose descriptions. A statement such as "A
schematic diagram of the circuit used to measure the stopping
potential is shown in Figure 6" is better than a long elegant set of
words. It is not necessary to describe in words what is shown in
a diagram, unless you feel that there is a very special part which
should be pointed out to the reader. If special experimental
techniques were developed as part of this work, they should be
discussed here. You should separate the discussion of the
equipment used to measure something from your results. This
section should not include data presentations or discussions of
error analysis.

DATA PRESENTATION AND INTERPRETATION OF
RESULTS: This is the most important section of the paper. The
data are the truths of your work. This section should lead the
reader through the data and how uncertainties were measured or
assigned. Experimental values without accompanying uncertain-
ties are meaningless. The numerical data values are presented in
tables and figures, each with its own number and caption, e.g..
"The results of the conductivity measurements are shown in Table
3". Itis difficult to follow narratives where the numerical results
are included as part of the narrative. Raw, unanalyzed data
should not be presented in the paper. All figures and tables
should be referred to by their number. Any figure or table that is
not discussed in the narrative should be eliminated. Items which
are not discussed have no place in a paper.

A Theoretical Study
THE MODEL: This part should consist of a theoretical
development of the constructs used to model the physical system
under investigation. Formulae should be on separate lines and
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numbered consecutively. The letters or symbols used in the
equations should be identified in the narrative, e.g.. The potential
can be approximated as:

W=2Z-0o(p) , (N
where Z is the number of protons and © is the screening constant
that is dependent on the charge density, p, of the inner electrons
of the K and L shells. If you wish to use this formula at a later
time in the narrative, you refer to it by its number, e.g.. "The
straight line fit shown in Figure 3 means that we can use
Equation 1 to extract a value of..."

CALCULATIONS: This section presents a summary and
discussion of the numerical results calculated from the model.
The results should be presented in tables or graphs, each with a
caption. A table or graph that is not discussed in the narrative
should be eliminated. Data that are not interpreted by the writer
have no place in a paper. One should reference numerical results
that are used in the calculations and come from previous work
done by others .

The following sections pertain to both types of papers.
CONCLUSIONS: It is indeed rare that one can come to clear
and meaningful conclusions in one paper. I do not know of many
papers where this section should be included.

REFERENCES: All references, numbered in order from

beginning to end of the paper, are collected together at the end of

the paper. You should be aware of the following format:

If the reference is a text-

1. A.J. Smith and Q.C.S. Smythe, Electromagnetic Theory,
Addison Wesley, New York, (1962), p. 168.

If the reference is a journal-

2. J. Boswain, Journal of Results, 92, (1968), pp. 122-127.

If the reference is unpublished-

3) R.J. Ralson, private communication.

ACKNOWLEDGMENTS: This short section should acknowl-
edge the help received (that is not referenced in the previous
section) from others. This is where you would give credit to a lab
partner or someone in the machine shop who helped you build a
piece of equipment.

OTHER ADVICE
TABLES AND FIGURES are placed by the layout editors at the
corners of the page to make the format attractive and easy to
read. Often a figure is not on the same page as the discussion of
the figure. Each table or figure should be numbered and have a

8

Thrust in Newtons

2 — 71—
0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time in seconds
Figure 1
A graph of the measured thrust of a D-2 model rocket engine as a
Sunction of time. The line drawn is the least squares fit straight
line to the data.

VOL 19, #1
State  Experimental Theoretical
eV eV
38 5.15%.01 5.13
48 1.89+.02 1.93
P 2.961.02 3.02
Table 1

Energy states found in the numerical search. The accepted
values for these states are also listed.

caption which explains the figure. Readers scan papers by
looking at the figures and data tables before they read the
narrative of the work. Take care to put enough information in the
caption of a figure or table so that the reader can get some feeling
for the meaning of the data presentation. All lines shown on
graphs should be identified, e.g.. "The dashed line is drawn to
guide the eye” or "The solid line is a fit to the data using the Ising
model"

An example of a graph of a set of data is shown in Figure 1. The
graph is sized by the range of data points. The bottom left point
does not have to be the point (0,0). Error bars are shown with the
data points. A graph with all the data points clustered in one
small corner and lots of white space does not help the reader get
a feeling of the dependence of your data. Be careful that the
figures you present are not too busy; too much information on a
figure makes it difficult to pick out the important parts.

NUMBERS AND UNITS Any experimentally measured data
presented in tables (such as shown in Table 1), should include an
uncertainty. You should use scientific notation when presenting
numbers, (7.34 £ .03)x107 eV. Take care that you have the
correct number of significant digits in your results; just because
the computer prints out 6 digits does not mean that they are
significant. You should use the MKS system of units.

STYLE It is often helpful to make a flow chart of your paper
before you write it. In this way, you can be sure that the logical
development of your presentation does not resemble two
octopuses fighting, but that it is linear.

One generally writes the report in the past tense. You already did
the experiment. You also should use the third person neuter case.
Even though you might have done the work by yourself, you use
"we". e.g.. "We calculated the transition probability for..." It is
often confusing when you begin sentences with conjunctions.
Make sure that each sentence is a clear positive statement rather
than an apology.

There are a few words or phrases you should be careful of using.
Fact - this is a legal word. I am not sure what it means in
physics. Proof or prove - These words are meaningful in
mathematics, but you can’t prove something in physics, espe-
cially experimental physics. The purpose of this experiment is...
Often it is necessary to do the experiment to complete the
requirements for your degree. You do not need to discuss the
purposes of the experiment. One can easily show that... - Don’t
try to intimidate the reader. What if the reader finds it difficult to
show? Remember that the reader of your paper is a senior in
college! It is obvious that... or One clearly can see.... - Such
statements only intimidate the reader that does not find your
work trivial. What is obvious to someone who has spent a lot of
time thinking about it, may not be obvious to the reader of your
paper. Data is the plural form of the noun datum. “The data are
" or “The data show that ...."
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