Y

North Carolina State Univer: ity

| in Physics
|
| CONTENTS
TWO LASER EXCITATION OF A THREE STATE ATOM ........cccovvvnnnrnnnen, 2
- Emek Yesilada
University of Rochester
| DESIGN OF A LOW COST GAMMA RAY SPECTROMETER TO
INVESTIGATE SPECIAL RELATIVITY ...t T .
: James Bopp
| | Truman State University ‘
! SPIN DYNAMICS OF THE LAGEOS SATTELITE .............cooooooiiiiinine, 11 ‘
| ‘ Sukanya Chakrabarti
|
|

DEVELOPMENT OF AN AUGER SPECTROMETER USING

| LOW-ENERGY ELECTRON DIFFRACTION OPTICS..........cccooviiciiiiiinnninnn, 16
' Ryan Munden

| Stetson University

|
SHOE-STRING INTERFEROMETRY ...ciiciioccinsinmiimiiiaviminmmseiasmsss: 20
| Jenny Flood, Ryan Scheetz and Marta Sieradzan,
N Central Michigan University
STOCHASTIC TRANSPORT AND ACCELERATION OF |
| SOLAR FLARE ELECTRONS ......cccorsrosatrseansssnssannaseyssssssosnropassstonssasnsssentonass osdsy syoaeiaos 25
Michael L. Edwards
Roanvke College
i
On Preparing a Manuscript to Submit for Publication - ................cccccccovivicnnnnncnnen 31
| Rexford E. Adelberger, Editor
| Volume 17, Number 1
Fall, 1998 : e
Produced by the Physics Department of Guilford College
for
I

The American Institute of Physics and the Society of Physics Students




THE JOURNAL OF UNDERGRADUATE RESEARCH IN PHYSICS

This journal is devoted to research work done by undergraduate students in physics and its related
fields. It is to be a vehicle for the exchange of ideas and information by undergraduate students.
Information for students wishing to submit manuscripts for possible inclusion in the Journal follows.

ELIGIBILITY

The author(s) must have performed all work reported
in the paper as an undergraduate student(s). The
subject matter of the paper is open to any area of pure
or applied physics or physics related field.

SPONSORSHIP

Each paper must be sponsored by a full-time faculty
member of the department in which the research was
done. A letter from the sponsor, certifying that the
work was done by the author as an undergraduate and
that the sponsor is willing to be acknowledged at the
end of the paper, must accompany the manuscript if it
is to be considered for publication.

SUBMISSION

Two copies of the manuscript, the letter from the
sponsor and a telephone number or E-Mail address
where the author can be reached should be sent to:
Dr. Rexford E. Adelberger, Editor

THE JOURNAL OF UNDERGRADUATE
RESEARCH IN PHYSICS

Physics Department

Guilford College

Greensboro, NC 27410

FORM

The manuscript should be typed, double spaced, on

8 1/2 x 11 inch sheets. Margins of about 1.5 inches
should be left on the top, sides, and bottom of each
page. Papers should be limited to fifteen pages of text
in addition to an abstract (not to exceed 250 words)
and appropriate drawings, pictures, and tables.
Manuscripts may be submitted on a disk that can be

read by a MacIntosh™. The files must be compatible
with MacWrite™, MicroSoft Word™ | PageMaker™
or WordPerfect™,

ILLUSTRATIONS

Line drawings should be made with black ink on plain
white paper. The line thickness should be sufficient to
be reduced to column format. Each figure or table
must be on a separate sheet. Photographs must have a
high gloss finish. If the submission is on a disk, the
illustrations should be in PICT, TIFF or EPS format.

CAPTIONS

A descriptive caption should be provided for each
illustration or table, but it should not be part of the
figure. The captions should be listed together at the
end of the manuscript

EQUATIONS

Equations should appear on separate lines, and may be
written in black ink. All equations should be num-
bered. We use EXPRESSIONIST™ to format
equations in the Journal.

FOOTNOTES

Footnotes should be typed, double spaced and
grouped together in sequence at the end of the
manuscript.

PREPARING A MANUSCRIPT

A more detailed set of instructions for authors wishing
to prepare manuscripts for publication in the Journal
of Undergraduate Research in Physics can be found in
the back of each issue.

SUBSCRIPT INF

To receive a subscription, send your name, address, and
check made out to The Journal of Undergraduate
Research in Physics (JURP) to the editorial office:

The Journal is published twice each academic year, issue
# | appearing in the fall and issue # 2 in the spring of the
next calendar year. There are two issues per volume.

TYPE OF SUBSCRIBER PRICE PER VOLUME JURP
Individual................................$US 5.00 Physics Department
Institution.............c....cevnere.... $US 10.00 Guilford College

Foreign subscribers add $US 2.00 for surface postage, Greensboro, NC 27410

$US 10.00 for air freight.

The Journal of Undergraduate Research in Physics is
sent to each member of the Society of Physics Students as

part of their annual dues.

Back issues may be purchased by sending $US 15.00 per
volume to the editorial office.




VOLUME 17

ACADEMIC YEAR 1998-1999

Unqgeergraduatef Research

in Physics

Produced by the Physics Department
of Guilford College
for
The American Institute of Physics
and

ISSN 0731 - 3764 The Society of Physics Students



2 THE JOURNAL OF UNDERGRADUATE RESEARCH IN PHYSICS

VOL 17, #1

TWO LASER EXCITATION OF A THREE STATE ATOM

Emek Yesilada *
Department of Physics and Astronomy

University of Rochester
Rochester, NY 14627

ABSTRACT
We determine the complex eigenvalues of a laser-driven three state quantum system. These eigen-
values are used to determine the photon absorption rate.

INTRODUCTION
In our model, we consider two different types of three-
level atoms that interact with photons. A ‘cascade’ atom is
one where an atom is excited to a second higher energy
level by absorption of a photon and then is excited to a
third even higher energy level by absorption of a second
photon (see Figure la). In contrast, a 'lambda’ atom
absorbs a photon, exciting it to the highest energy level
and then the atom reaches a third level, that has less
energy, by stimulated emission caused by a second
photon. (see Figure 1b). In both cases, the two transition
energies in each of the atoms are assumed to be quite
different, so two different energy lasers are needed to
supply the required pairs of photons to interact with the
three level atoms. The energies of the photons produced
by the two lasers are labeled A, and Aw, as shown in
Figure 1.

For the interactions between the photons and the atom to
occur, the photon energies do not have to exactly match
the energy difference between the states of the atom. The
difference between the photon energy and the energy
between energy states of the atom is characterized by a
'detuning' shown as #A, and A4, as shown in Figure 2.
The success of the transitions, whether the photons
actually can excite the atoms, depends on the detunings.
The larger the detunings become, the more difficult it gets
for the atoms to make the transitions.

The second energy level, because of collisions with other
atoms, can undergo a non-radiative transition to a lower
energy state. This sort of process can be handled by

Emek is a first year graduate student working with an
experimental atomic and molecular phhysics group at
the University of Texas at Austin. This research was
begun in the spring of 1997 at the University of
Rochester. He loves playing soccer and is enjoying
the sunny days of Texas.

13>
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ha,
hw, 13>
1> 1>

[0 ()
Figure 1
Sketches of two types of 3 level atoms, where w, and wj,
are the frequencies of the lasers a and b respectively. a)
shows a cascade atom; b) shows a lambda atom.

making A, have an imaginary part. There is an indirect
loss process for all other levels as well. We will examine
this loss process in detail when we find the eigenvalues for
the various states.

Solving Schrodinger's Equation
We must solve the time dependent Schrodinger equation to
determine the transition rates. The transition rates depend
on the size of the detunings, the strength of the laser fields
and the dipole moments of the atoms. The Hamiltonian is
a sum of two terms: H = H, + H, representing the bare
atom and the atom's interaction with the laser field.

Because the atom being considered has just three states,

[ ;[“

13>
how
12>
ho
1>

>

(b)

Figure 2
Sketches of the two types of 3 level atoms showing the
energy gaps Az and A;.
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the Hamiltonian will be a 3x3 matrix. The ™ element of

the Hamiltonian is:

<ilHlj>=<iH+H,)j>=<lW]j>+<iH,)j>
=WJ,+<ilH,lj>, (1)

where W, is the energy of the j* state of the atom and &, is
the Kroeneker delta.

The wavefunction, ‘¥(1) for the three state system is a
linear combination of the three states: '

YY) =c (DN >+c(0) 12>+¢y(1) 12>, (2)
where 11>, 12> and I3> are the eigenfunctions for the three
states of the atom.

The Schriodinger equation, in matrix form, for this system

is:?
i =y
gle] | <uEn> <1HR> <11H3> ([ e,
i ¢, | =| <2HI> <2IH2> 2AHB> ||y | (3)
Ne,| |<3HI> <BIHIZ> <3IHIB> || ¢,

To evaluate the term <11H12> note that from Equation I,
<lIH 12>=W,. The term that describes the interaction with
the laser photon is a bit more complicated:

<lH,,j2>=~d, [E(1) + E,®)] , @)
where d|1=,[¢|['r) [er] §,(r) d'r , e is the electron charge, ¢,
and ¢, are the eigenstates if there were no laser interaction
and E_and E, are the electric fields of the two lasers. The
electric field due to the two lasers is given by:

E (1) = E, exp[-iw) + E,” expliw,]
E(t) = E, expl-iayf] + E,” expliwyt] , (5)
where E_ and E, are the complex peak laser field strengths.

We will assume that the fields are monochromatic, so E,
and E, are real and independent of time.

To eliminate the main time dependence of the Hamilto-

nian, we define:
S
¢, =a, ex —:—ﬁ—r
d-ifon )
G =dexp—i|@, + == |1
C] = a] BXF{-— ‘. ((0" t 0),, + %) I‘ =

If the frequency term in ¢, is (@, + ®,), we have a ‘cascade’
atom; if the frequency term in c, is (w, - ®,), we have a
'lambda’ atom.

(6)

To show that the Hamiltonian becomes mainly indepen-
dent of time and the energy W, of the three levels , we
work out an example for both ¢ and a. Consider the
equation of ¢, (from Equation 3):

ihd: ¢, = QMHI> ¢, + QUH2> ¢, + QAHB> ¢, (7)
Using Equation 4:

.2 0 =

i hgf Cy=
- (d,z)*{Eae['f“'a‘l+Eac["‘“u‘1+E,,c["“%'1+E,,c““’b‘1}c, +Wie,
— (d23){ E e E eliCall 4 E, el-iopt) 4 F, eliop] }q . (8)

Now, if we substitute in the expressions for the c¢'s from
Equation 6, Equation 8 becomes:

L aa? -ilm +E-l- -
lfl—aT e ( L ) =
. . . . W
—(d) * {E -0+ E elioul 4 E,el-iop L E,eliop) g g5
+{W,~he,~ W,) aye-i(oar 5 - ©)
(A, ) E, 014 E, 04 B, cl-i0m14 E, lion) g o artans 3L

Recalling the definition of the detuning parameters A, and
A,, and doing some further simplification, such as ignoring
terms involving exp[2i t], exp[i(® +®,)!] and even
expli(w,- @, )1] as they oscillate very rapidly and will have
no long term effect on the system, Equation 9 can be
written as:

da,

iﬁ’g}' =—(d\)) * E,a, + hAa, — dyE, . (10)

The reader should also note that W, = W, + Aw, + hA, .

_ . . i da
In a similar fashion we can obtain two equations for ETI

ay

and 7 which are a bit simpler as <11HI3> and <3|Hl1>

are both zero by the selection rule. We do not allow any
transitions from the first to the third state and vice versa.

If we let:
_ d,E, __ (dﬂEf). _ dyE, = (dHE-"].
a=—p—t="" and b——_ﬁ =, (11)
the Schrodinger equation takes on the form:
a, 0 —a 0 a,
izl |=| —a A, -b ||a,|. (12)
a, 0 -b A LA ||%

If the last element of the Hamiltonian is As + A3, we have a
cascade atom, if the last element is A; - Az, we have a
lambda atom.

In the special case where a = b, we can factor out @ in
Equation 12 to make the matrix dimensionless. If we
define d> = As/a and d3 = As/a, Equation 12 now takes on
the form:
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5 [ 0 -1 0 a,
ig|a|=a -1 d -1 ||la]. (13)
a, 0 -1 d,td,||%

The most important feature of this result is that in contrast
to Equation 3, the Hamiltonian matrix is now independent
of time.

Eigenvalues, Analytic Approximations
If we denote the Hamiltonian matrix in Equation 13 by M
and the eigenvector by @, we have:

MO=AlD, (14)
where A is the eigenvalue of M and / is the identity matrix.
The eigenvalue in Equation 14 will be different from the
bare atomic energies W;, W, and W; due to the interactions
of the laser. Equation 14 has nontrivial solutions when:

A | 0
dettM-A=| 1 A-d, ! =0.
0 | AAdydy)

(15)

If we denote the last element as 8 = dz £ dj3, solving
Equation 15 gives the cubic equation:

A=A (@ +dy) +A(d 8-2)+8=0. (16)
We first obtain the eigenvalues for particular values of dz
and d;. When & = 0, one of the eigenvalues will be zero.
When & and d are very large, we can simply ignore the
subscripts representing the laser field strengths a and 4. In
this case, Equation 15 is already diagonal, giving the
eigenvalues 0, d; and 8.

The laser frequencies, W, and wp, and the detunings are
assumed to be under the control of the experimenter. To
show what happens for different choices of the dimension-
less detunings d> and d3, we introduce a control parameter
z, such that:

d,=—1+z and dy=-5 +z . (17)
When z =0, d> = -1 and d3 = -5, meaning that the laser
field strength is greater than the energy needed for the
transition. As z increases, the detunings become less
negative and eventually positive, meaning that the laser
has less than the energy required for the transitions. One
photon exact resonances occur when z = 1 (d2=0)and
when z = 5 (d3=0). If we are considering a lambda atom,
we set d; = 5 - z because in this case, the third level is
reached by stimulated emission rather than by an absorp-
tion.

If the detuning parameters can have a real and imaginary

part, we define the complex parameter as d, = d; - iy. The

characteristic equation (Equation 16):
AM-A@+d)+A(d,8-2)+8=0.

has complex eigenvalues as solutions.

(18)

There are several interesting regions depending on which
parameter is taken as small. When d, >>8 and 8 is very
small, we can scale Equation 18 by dividing by (d, )3.
Making the substitution:

x=%,y=%,A=JL2. (19)
Equation 18 becomes.
B-xy+1) +x(y —24Y) +A’y=0 (20)
To examine the behavior of x and A near zero, we set:
x=oy+ Py +6y°, (21)

and insert Equation 21 into Equation 20. The coefficients
of y, y2 and y3 are set to zero to determine o,  and 6.
When we substitute the calculated values of ¢, § and 6

into Equation 21, we get:

S . TR BN
8A” " T6A”
Putting Equation 22 back into Equation 19, A becomes:
_ls 172 1g3
1—28+8&’,8 169 (23)

X %y +——=y* - (22)

Equation 23 shows that when the eigenvalue A is small, its
imaginary part has only even powers of 8. When we use
Equation 18 to plot the imaginary part of A for small A and
8, a parabolic behavior results as shown in Figure 4.

Another interesting case is that when & is large. Then we
can introduce a dimensionless scaling by dividing Equa-
tion 18 by 83. For the eigenvalue near zero, we do a
similar analysis as with the case for small &:

d o ¢
RS SR R . 24
d, dy’ +7 dy’ +¢ e
To analyze the eigenvalue close to 8, we set
A=0+¢, (25)

where € is the small parameter. Inserting Equation 25 into
Equation 18 and keeping only terms linear in € and going
through an analysis similar to the one done to get Equation

A

Figure 3
Sketch of the eigenvalues for large 8 and d.  The control
parameter z is given in Equation 17. The blank central
region is shown in Figure 5.
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Figure 4
Plot of the negative of the Imaginary part of the
eigenvalue for dy = 10 and y= 1 as a function of 4.

24:
g= L= o P s S
8-d, di+y  dy+Y
Substituting Equation 26 into Equation 25, we find that the
imaginary part of the eigenvalue A is:

ks,
" dxz""Yz

(26)

27

To find the behavior of the eigenvalue close to ¢, , we
write:
A=d,+€. (28)
Again performing a similar analysis, the imaginary part of
the eigenvalue A is:
2y

: 29
d + 7 29
Two (for near & and for large 8) of the imaginary parts of
the eigenvalue decrease and approach zero with increasing

ImA=-y+

d, and one (near d, ) approaches the steady value of -y in
its asymptotic limit (see Equation 29).

NUMERICAL RESULTS
We used MATHEMATICA™ to obtain numerical values
for the eigenvalues in the region where 8 is small (the
region that was left blank in Figure 3. Graphs of the value
of the eigenvalue as a function of z (see Equation 17) with
y= 1 are shown in Figure 5. Note that the numerical
values of the eigenvalues come very close to each other at
three points called ‘avoided crossings’. We had to tell
MATHEMATICA™ to order the eigenvalues by size to
avoid any jumping from one eigenvalue to the other at
these ‘avoided crossings’. Figure 6 shows the results for
the imaginary values of the eigenvalues.

ABSORPTION RATE
The ground state probability amplitude is of the form:

a(f)=Ae M +Ae M4 AN, (30)

where A1, A2 and A3 are the three eigenvalues. The three
terms in Equation 30 will be decaying at different rates as
the A’s have different imaginary parts. The term with the
smallest imaginary part of the eigenvalue decays the
slowest. Thus, the ground state probability can be written
as:

|a@f =|Af e,

where Ag; is the smallest imaginary part of the three
eigenvalues. Taking the derivative of Equation 31 shows
that the speed of the decay is determined by Agj, which is
called the ‘absorption rate’. Note that the absorption rate
is just the negative of the decay rate or -Ag).

(1)

The imaginary parts of the eigenvalues represent the speed
at which the population decays. We are interested only in
the smallest imaginary part as the others will already have
decayed. Figure 6 shows that the imaginary parts cross
each other at certain points. At these points, the absorption
rate is not represented by the imaginary part of a single
eigenvalue throughout the whole range. So, we tell
MATHEMATICA™ to take the smallest imaginary part
throughout the entire range to give us the absorption rate,
shown in Figure 7.

A

/
L

=t
oF
15t
=

-10

5 10 15
X (a)
6
4
2
0 =
pr”*_—;_’_
-2
-4
-6 L
. i A A i = 7
1 2 (p) 3 4 5 6
Figure 5

a) MATHEMATICA™ output to show the values of the
eigenvalues in the region where d is small as a function of
z(dy=-1+z,d;=-5+2z v=1). b) A closer look to see
the avoided crossings of the eigenvalues.
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Figure 6
MATHEMATICA™ generated plot of the imaginary part
of the eigenvalues as a function of z. Notice that the
values cross at certain points.

‘MAGIC’ DOUBLE RESONANCE
The case where 8 = d, + d3 = 0 is called double-photon
resonance. From Figure 7 we see that when we have
double-photon resonance, the absorption rate is zero. This
was not expected because the higher the number of
transitions, the higher the number of electrons lost. Here
the detunings add up to zero. When the detunings are
small, the transitions are more likely to happen.

At the double-photon resonance there is no loss of
electrons even though the photon energies match with the
transition energies. This means that when the atom is
excited with two lasers that exactly match the atomic
transitions, the second level (where the loss takes place) is
skipped. As we move away from the resonance, there is a
sudden increase in the absorption rate. If we go too far
away from the resonance, the absorption rate starts
decreasing and becomes very small. This can be seen
from the asymptotic approximations of Equations 24 and
27. This is because when the detuning become very large,
the transitions are not likely to occur.

0.01

Figure 7
Absorption rate of photons as a function of the parameter
z f6=d3+d3=0arz=3)
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DESIGN OF A LOW COST GAMMA RAY SPECTROMETER TO
INVESTIGATE SPECIAL RELATIVITY

James Bopp *
Division of Science (Physics)
Truman State University
Kirskville, MO 63501
received Sept 15, 1997

ABSTRACT
We designed a low cost Nal(T1) scintillation detector and single channel analyzer to be used to
measure the rest energy of the electron. We used the instrument to deduce the behavior of electrons
following Compton scattering collisions in the crystal. We found a value of the rest energy of the
electron to be (0.51+0.02) MeV and experimentally verified Einstein’s energy-momentum relationship.

INTRODUCTION
The experimental investigation of special relativity in the
undergraduate laboratory is often neglected due to the high
cost and sophistication of instrumentation capable of
measuring relativistic behavior. This means that many
students feel that relativistic theory only applies to
imaginary rockets traveling close to the speed of light and
not to the real world. However, when studying the
interaction between matter and gamma rays during events
such as Compton scattering, one finds that relativistic
behavior is the norm.

Gamma rays primarily interact with matter in three ways:
a) via the photoelectric effect; b) via Compton scattering;
and c) via pair production. The material we will be using
in this experiment is a Nal(T1) scintillation crystal, a
material that converts the energy of an icident gamma ray
into photons of visible light. In this paper, we will be
concerned with the first two mechanisms.

Photoelectric Effect
The photoelectric effect is a phenomenon in which a
photon (a gamma ray in this experiment) is absorbed by a
tightly bound electron in the material. This electron is
then ejected from the atom with an energy, E,, equal to the

James earned a B.Sc. in physics from Truman State
University in May of 1998 with minors in
mathematics, philosophy and religion. The research
discussed here was conducted during his last two
years at Truman. It was sponsored by grants from the
Univerisity. He is currently a Jesuit novice at St. Paul,
MN. He hopes to study physics at the graduate level
while he engages in the philosophical and theological
studies necessary to become a Catholic priest.

difference between the photon energy, E7, and the binding
energy, Ep, of the electron to the atom.

E,=E,~E, . (1)

In a Nal(T1) scintillation crystal, all of E, is deposited in
the crystal’s lattice. Ep shows up as a X-ray from the
filing of the vacancy in the atom created by the ejection of
the electron. This X-ray is also absorbed by the crystal.
Therefore, nearly all of the energy of the gamma ray
interacting with the crystal through the photoelectric effect
is deposited in the detector.

Figure 1 shows an idealized output from a scintillation
crystal that is being bombarded by single energy gamma
rays. The photopeak shown is caused by the photoelectric
absorption in the crystal. This peak corresponds directly
to the energy of the incident photon. !

Compton Scattering
Compton scattering is essentially a sub atomic game of
billiards. An incident gamma ray interacts with a free
electron and the two scatter as depicted in Figure 2. The
energy of the original gamma ray is divided between the
energy of the scattered gamma ray and the recoil electron
in a way that conserves energy and momentum. The
energy of the scattered gamma ray is dependent on the
scattering angle. The scattered photon frequently escapes
from the scintillation crystal and only the energy of the
recoil electron is absorbed by the crystal and reemitted as
visible light.

Compton scattering in the crystal produces a continuous
spectrum in the output as shown in Figure 1. The Comp-
ton Continuum shows electrons with kinetic energy
beginning at almost zero, the photon just grazing the
electron and scattering at a small angle, to some maxi-
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Photopeak

0= 180"

Energy

Figure 1
Idealized spectrum produced by a gamma ray stopping in
a scintillating crystal. The photopeak corresponds to the
energy of the incident gamma ray. The Compton edge
corresponds to the maximum kinetic energy an electron
can obtain through Compton scattering.

mum kinetic energy, Tmax, known as the Compton Edge,
where the photon back scatters at 180 degrees. 2 The
energy corresponding to the Compton Edge can never
equal the original energy of the photon because both
energy and momentum are conserved in the interaction.

Relativistic Kinematics
Discussions on relativistic kinematics can be found in
many textbooks. 3 Using the conservation of total energy
and relativistic momentum, where:

E}=(cp)* +(m,c) =(T+m,e?), (2)
where T is kinetic energy, the Compton edge energy, Tmax,
due to the scattering of a photon of energy EY, is given
by4:

E
= @
1 +2—L
m,c

(]

T,

max

2

where mc2 is the rest energy of the electron. Solving
Equation 3 for the rest energy gives:

r "' -1
@
4
[]
_____ — <
E, me < ]
\h
N EY/
Before After EY
Figure 2

Schematic diagram of a Compton scattering event.

ot (@~ (Tw)’ 2By (By=Ton)
(i 2 Tmu Tm“ .

When one analyzes the scattering from a classical nonrela-
tivistic standpoint, Equation 4 would take the form:

(2E,- 1:,,,,‘)2
2T,

(4)

_(ep) _

2T, )

2
(m"c )chn:ical'

Equations 4 and 5 only differ significantly when T,y
becomes a significant fraction of the rest energy of the
electron. Thus if one experimentally measures 7, and Ey
for gamma ray energies in the MeV region, one can
experimentally verify the relativistic kinematics formulae.

THE APPARATUS
There is much information on how to apply gamma ray
spectrometry to the study of special relativity. 5 The
typical gamma ray spectrometer functions in the following
way. A gamma ray enters the scintillating crystal where it
interacts with the atoms in the crystal through the photo-
electric effect or Compton scattering. In either case, the
disturbance of the electrons in the crystal results in a flash
of light whose intensity is directly proportional to the
kinetic energy of the agitated electron. This flash of light
is reflected into a photomultiplier tube (PMT) which uses
photoelectric absorption and secondary emission to
transform the light into an electrical pulse whose voltage
magnitude is directly proportional to the intensity of the
light, and therefore, proportional to the energy deposited
by the gamma ray in the crystal.

What is unique about what we have done is the cost and
simplicity of the apparatus. Traditional apparatus for
gamma ray spectroscopy in the undergraduate laboratory
consists of a scintillation detector (a scintillating crystal
attached to a photomultiplier tube) which sends signals to
a computer based multichannel analyzer. Others use high
purity germanium detectors that must be stored and
operated at cryogenic temperatures. In general, these
systems cost thousands of dollars.

Our spectrometer is certainly more primitive than the
commercially available models, but it is capable of
obtaining comparable results for less than a thousand

. Nal(TT) | Photomulsiptier | ... : i
| Coysal Tube 1 é""“" A
Single
Couater Channel
Figure 3

Schematic diagram of the electronics used to construct the
Gamma Ray Spectrometer used in this experiment.
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Figure 4
Schematic diagram of the Single Channel Analyzer

dollar investment. We purchased a 2" x 2" Nal(Tl) crystal
and a 10 stage box and grid PMT 6 and a high voltage
power supply to operate the PMT 7. We built our own
voltage divider for the PMT. The detector we constructed
produced large signals (around 5 V for a 0.662 MeV
gamma ray), so no preamplifier was necessary to analyze
the signal. To analyze the various voltage pulses produced
by the PMT, we built a single channel analyzer (SCA) out
of five common integrated circuits and a few peripheral
components. 83 Figure 4 is a schematic diagram of the
SCA.

The SCA consists of a small fixed voltage window which
is systematically swept through the full range of the
possible voltages input to the device. Any pulse which
falls above or below the window is blocked, while pulses
whose peaks fall within the window produce a logic pulse
which is sent to a counter. (see Figure 5).

The relative number of counts per time are plotted as a

function of the voltage value of the center of the window.
This histogram is called the gamma ray spectrum. Figure

Input

Window I

Output

Figure 5

Basic operation of a single channel analyzer. Only those
pulses whose peak value falls inside the window register
cause a logic pulse to be sent to the counter.

:

:

:

Counts (per 30 sec)

0 H.JD 1‘30 .‘vCIDCI 460 500 600
Window Position
Figure 6
Experimental gamma ray spectrum for a 137Cs source.
Compare this to Figure 1.

5 shows a spectrum we obtained from a 137Cs source. It
should be compared to the ‘ideal’ spectrum shown in
Figure |. The SCA is calibrated by producing gamma ray
spectra for several sources that have known energy
photopeaks and determining the energy value correspond-
ing to any given window value (see Figure 6).

The total cost of our spectrometer was less than one
thousand dollars. Our spectrometer has a resolution
(FWHM, 137Cs) of 7.7%, which is typical of commercial
Nal(Tl) gamma ray spectrometers. The disadvantage of
using an SCA is that it takes over an hour to collect the
spectrum data using it.

RESULTS USING OUR SPECTROMETER
We carefully measured the gamma ray spectrum for 8
different sources. From these data, we determined values
of the Compton edge (Tinuy) and the energy of the gamma
ray (Ey). Table 1 shows these results.

Figure 7 is a plot of the rest energy vs Ty, using Equa-
tion 5, the relativistically correct analysis of Compton
Scattering. The zero slope fit to the data in Figure 8 shows
an invariant rest mass with a value (0.5140.02) MeV. This
value overlaps the currently accepted value of the rest
energy of the electron.

Figure 8 shows a plot of the momentum of the electron
that is back scattered as a function of the measured kinetic
energy (Tmax). The solid line is what one would expect
using the classical approximation. The dashed line in
Figure 8 is the relativistically correct theoretical relation-
ship between momentum and kinetic energy.
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Calibration graph created by plotting known photopeak
energies against measured photopeak positions. The line
is a best fit using linear regression. The error bars are
smaller than the data points.

allowing the use of his HPGe detector data.
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ABSTRACT
The Laser Geodynamic Satellite (LAGEOS) experiment is a proposed program to measure the
relativistic Lense-Thirring precession as induced by the gravitomagnetic field of the earth. The Lense-
Thirring precession of the orbit plane of the satellite is 0.031 arcsec/year. This relativistic effect is
dwarfed by the classical contribution of the nodal precession of 126 degrees/year. To magnify the
relativistic effect in comparison to the classical effect. It has been proposed to launch a second
LAGEQS satellite into an orbit supplementary to LAGEOS I, i.e., if the orbit of LAGEOS I has
inclination /, then that of the second LAGEOS-type satellite will have inclination 7t - /. For a paired
satellite experiment, the classical effects will cancel, while the Lense-Thirring precession, or frame-
dragging effect, will add. If perturbative effects can be accounted for adequately, an accurate measure-
ment of the relativistic effect might be possible. Of the five dominant error sources in this experiment,
the largest one involves surface forces, a function of the spin dynamics, on the satellite and the impact
of these forces on the nodal precession. A previous analysis of the gravitational torques on the spin
dynamics of a satellite suggested chaotic motion. In this paper we investigate the stability of the
motion of the satellite. We derive the gravitational torques on the satellite. Numerical solutions for

the precessional velocity show that it is bounded.

BACKGROUND
The first investigation into the nature of the
gravitomagnetic field as a consequence of the general
theory of relativity was made by Hans Thirring and Josef
Lense. Their calculations evinced the structural analogy
between the magnetic field produced by a dipole and the
gravitomagnetic field produced by a massive spinning
body. They found that in the weak field approximation the
gravitational field of a rotating body is characterized by a
"vector potential" that in the first approximation corre-
sponds to the gravitational "magnetic" dipole due to the
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national laboratory and continued during her senior
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year graduate student at the Georgia Institute of
Technology.

mass current. ! 'We call this field the gravitomagnetic field.
In the unit system where the gravitational constant G = 1
and the speed of light ¢ = 1, this vector potential for a
spinning mass M is given by:

.. INT
sz_r’ ” (1)

where J is the angular momentum and r is the distance
from the center to the test mass.. Equation 1 is valid in the
region where r >> 2M and r >> J/M. The curl of the
vector potential gives the gravitomagnetic field:

VxG=%[37-17-7]|. @

This field would act on an orbiting gyroscope, producing a
nodal precession at a rate given by:

Q,=2i-ef 3)

where a is the size of the semimajor axis of the orbit, e is
the eccentricity and €2, is the longitude of the ascending
node. This 'frame dragging' effect has been found to be a
crucial ingredient in the dynamics of accretion disks,
binary systems and other astrophysical phenomena. ?

This 'frame dragging' or Lense-Thirring precession is so
small for earth bound satellites that as of yet, it has not
been experimentally verified. One of the most promising
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proposed experiments to detect this effect is the LAGEOS
III approach. The LAGEOS is a dense, nearly spherical
satellite, covered with laser reflectors in a medium
altitude, high inclination orbit. Since the LAGEQS can be
tracked very accurately with laser ranging, it can serve as
an excellent measuring device to detect this 'frame-
dragging' effect.

The orbital plane of the LAGEOS can be thought of as a
gyroscope subject to the gravitomagnetic field. The
Lense-Thirring precession of the orbit plane (nodal
precession) amounts to about 0.031 arcsec/year. * This
Lense-Thirring precession is very small compared to the
classical precession and various other perturbations. The
classical precession due to the oblateness of the satellite
contributes 126 degrees/year to the total nodal precession.*

Qﬂrm.mrrd = QT # Q&ml‘raf + Qlﬂnr v (4)
where €, . represents the precession due to perturbative
forces.

The classical precession of a satellite £, is modu-
lated cos(/), where / is the inclination of the orbit. A
scheme, shown in Figure I, has been proposed to launch
counter rotating satellite in supplementary orbits.® The
classical effects on the precession cold be ellmlnated if the
two measured precession rates, Qf,,,mmd and Qwamn-d' are
added together. Due to the change in sign of the cos(/)
term, the classical precession terms would cancel while the
relativistic effects would add. The Lense-Thirring
precession rate would be:

2Q,=0Q

I+ 1
e 1S the precession rate due to all other terms.

i =1+l
mmm.i' measured Qﬂm.rr ) (5}

where

The viability of the experiment, therefore, hinges to a large
extent on the ability to account for perturbative effects on
the satellite. The dominant error source in this experiment

Lageos III

Figure 1
Proposed orbits of LAGEOSI and LAGEOS Il satellites.
The two orbits have supplementary inclination angles.

which can affect the nodal precession is due to surface
forces on the satellite, such as Yarkowsky thermal drag or
neutral and charged particle drag. ®

Since the surface forces are a function of the spin dynam-
ics of the satellite, so the behavior of the spin vector of the
satellite, it is crucial to understand the behavior of the spin
vector of the satellite in modeling the surface forces. In
this paper, we develop a theoretical model of the spin
dynamics of the satellite due to the gravitations torques
and investigate the stability of the motion.

The prominent torque on the satellite is due to the gravita-
tional field of the earth acting on the oblate satellite. Such
torques arise when the satellite's bulging equatorial plane
does not lie exactly in the plane of the orbit. We follow
the development used by Goldstein 7 and consider the case
of an oblate spheroid in orbit around a point mass.

Comments on Bertotti-less analysis

A previous analysis of the effects of gravity on the spin
dynamics predicted chaotic motion. * This “Bertotti-Iess”
analysis does not hold for small rate of spin, when the spin
frequency approaches the orbital frequency in the asymp-
totic limit. Their analysis utilized the "Hipparcos"

formula for the rate of precession, @, of the oblate satellite
in the gravity field of the earth: *

2
®,= % A(%) cos (0), (6)

where ®_ is the orbital angular velocity, ®, is the satellite
spin rate, 8 is the angle between w_ and the normal to the
orbital planand A= I, - (I/1,) is the oblateness of the
satellite. [ =, are lhe principal moments of the satellite
and [, is a]ong the direction of @ which coincides with the
symmc[ry axis of the satellite.

It was argued that since the rate of precession is inversely
proportional to the satellite spin rate (when the spin rate
approaches the orbital velocity), the gravitational preces-
sion would grow without bound, resulting in a chaotic spin
dynamics. It has been shown® that even in the approxima-
tion used to derive Equation 6 (averaging the gravitational
potential over the satellite orbit and cutting off the multi-
pole decomposition at the dipole term), Equation 6 can
only be used when:

2 2
6 A(% cos(ﬂ)) = (%] <<l (7)

or when the spin rate of the satellite is much greater than
the orbital angular velocity. The expression for the
precession frequency for comparable spin and orbital
velocities is given by: '*

2
mp=%)3~cos(9)(l—\/l+6ﬁ[%cos(9}] ) )

Equation 8 imposes a bound on the size of the precession
frequency:
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Thus, the rate of precession cannot grow without bound to B=- ?
produce a chaotic spin dynamics. !
IV 4 N,cos(®)
. 9g tNeos®
GRAVITATIONAL TORQUES ON SATELLITE p=- sin“(0) (16)
The complexity of the analysis of the motion of spinning, I
orbiting bodies is largely due to the reference frames that N,= gi .
must be invoked to describe the motion. We used an Earth v

Centered Inertial (ECI) reference frame. The ECI frame is
fixed inertially in space with the origin at the center of the
earth. The z_axis is along the earth's rotational axis while
the x_and y_axes lie in the equatorial plane. The x_axis is
in the direction of the Vernal Equinox. The standard Euler
angles, shown in Figure 2, the nutation angle 6, the
precession angle ¢ and the spin angle y are used to relate
the body frame to our inertial coordinate system.

We obtain the gravitation equations of motion using the
Lagrangian approach. The components of the moments of
inertia are /. I =1, for our axially symmetric body. The
components of the angular velocity vector, w, are:

w, = ¢ sin(0) sin(y) + 6 cos(y)
®, = ¢ sin(0) cos(y) — 6 sin(y)
@, = cos(0) +V,
where the dots indicate derivatives with respect to time.

The components of the torque, N, acting on the satellite
dare:

(10)

Ny =1, & = (I, - I;) w0
Ny=1,&,— (I, - ;) wu,
N, =1, .

(11)

The Lagrangian function is:
L=T-V, (12)
where T is the kinetic energy and V is the potential energy.

The Lagrange equation of motion for a generalized
coordinate g is:

dfdL)_dL _
4 35) SL-o. (13)
In our case, the generalized coordinates are the Euler
angles.
The kinetic energy for our satellite is:
T=% f,(m§+ag]+;_,ag]. (14)

Using Equations 10, the kinetic energy in terms of the
Euler angles becomes:

T= -{,- I, [Jp’sinz(e) + 0’] + % 1 cos(®) + ‘~'|!]2 (15)

Solving the Lagrange equations for the three coordinates
gives:

The gravitational potential for this system in the standard
dipole approximations is:

GM(l,—1
v=STh ) (3 ),
where 7 is the direction cosine between the radial vector
from the satellite center of mass to the center of the earth
and the body axis, z,, of the satellite. We can simplify the
notation by letting:

(17)

3IGM(IL -1
B= —rg‘—') . (18)
Equation 17 for the potential then becomes:
v=%(3f—1). (19)

The partial derivatives of the potential then take on the
form:

Jy .

vV _ Y. 9V _qa. 9
%_BYE! =t

av
‘B'}’%- oy BTH-IF'

36 = (20)

Expressing the direction cosine as:

Y=-F-3, (21)
and the ECI coordinates of the unit vector along the body
axis of the satellite in terms of the Euler angles, we get:

sin(6) sin(¢)

(), =| —sin(®) cos(¢)
cos(0)

(22)

The satellite position unit vector does not depend on the
Euler angles, and may be represented as:

Figure 2
The Euler angles relating the earth centered inertial
reference frame and the body frame of the satellite.
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(23)

~
ﬂ"ﬂ \*“11 E‘,

Substituting Equations 22 and 23 into Equation 21 gives:

y=- {sin(B) [f,,sin(q;) = ?_wcos(q:)}-i- f,,cos(e)} 24)

Taking the derivative of 7y in equation 24:

g% = —|cos(B) [F,,sin(q:) - F_,,cos(q:}) ~ F,sin (G)I
g% =—sin(6) (F,,cos(q:} + r-_,,,sin(qa)) (25)
ay _ 0
W =u.

The equations of motion due to the gravitations torques
become:

s_ B_oy

9——'!—;'73-9-

___ B dy

7 sin@) ! 90 25)
= _PBcos(®) dy

V= sink) 199

=2

where P and g are given in Equations 18 and 24 and the
partial derivatives of 'y are in given in Equation 25.

RESULTS
Equations 26 are second-order, nonlinear differential
equations free of singularities. The can be transformed to
two sets of first order equations. There are many
numerical methods for solving systems of first-order

Precessional Velocity Versus Time
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£
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p 1.05x107  2.1x107  3.15x107
Time (8)
Figure 3

Results of the numerical integration of the equations of
motion. This is a graph of the precessional velocity as a
function of time. The precessional velocity remains
bounded.

differential equations, such as Runge-Kutta, extrapolation
and predictor-corrector methods. The Runge-Kutta
method is often a default approach in computational
science as it works well for a wide range of problems and
is fairly simple to implement. For most well-conditions
problems, however, extrapolation or predictor-corrector
methods are actually more efficient. Thus, we chose the
Burlisch-Stoer algorithm.!! The model propagates the spin
state of the satellite (Euler angles rates) over a period of
one year. The data is output in the form of a state vector
about once a day in the life of the satellite. The initial state
vector is based on a known data point on July 29, 199212,
A run time of one year is sufficient as it was much greater
than the three characteristic time periods involved in the
motion of the satellite: the period of rotation; the period of
the spin; the period of precession.

Our results are summarized in Figure 3. The numerical
runs verify the theoretical bound on the precessional
velocity. The value of ¢ does not grow beyond its initial
order of magnitude. The satellite does not experience
chaotic motion.

This analysis of the contribution of the gravitational
torques to the spin dynamics of the satellite was motivated
by the hope that a predictable spin dynamics would allow
for a measurement of the Lense-Thirring effect. However,
magnetic torques and perturbative effects on the satellite
must also be studied to comprehensively determine the
spin dynamics of the satellite. The LAGEOS III approach,
with its proposal for supplementary orbits to magnify the
relativistic effect provides an optimal strategy for detecting
the Lense-Thirring effect. As the gravitational torques on
the satellite are the dominant torques, this analysis des
suggest that the spin dynamics are stable. Work is
currently underway to compare the observational data of
the satellite with a more comprehensive model that
includes the magnetic torques on the satellite.
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ABSTRACT
This paper reports on the adaptation of an existing low energy electron diffraction (LEED) system into
an Auger spectrometer. Auger spectroscopy is an accurate method for analyzing the elemental compo-
sition of substances. High-energy incident electrons are shot at a sample freeing inner-shell electrons
from the surface atoms. An outer-shell electron drops into the vacancy left by the ejected electron
releasing excess energy. Instead of releasing the energy as a photon, it ejects a second electron. This
Auger electron has an energy characteristic of the element. We constructed power supplies and
configured the equipment to make a spectrometer capable of detecting submonolayer amounts of
carbon. With this system, Auger spectroscopy can be performed on the same sample as LEED without
having to remove the sample from the ultrahigh vacuum chamber.

INTRODUCTION
Auger electron spectroscopy (AES) is a method of
determining the elemental composition of surfaces by the
analysis of the energies of Auger electrons. 1-4 The
process for releasing Auger electrons begins when an
incident electron from an high energy electron beam
collides with an inner shell electron in one of the atoms in
the sample. The inner shell electron (e.g. an L level
electron) is knocked free leaving an energy vacancy. An
outer shell electron (e.g. an M level electron) in the atom
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then fills the vacancy due to the ejection of the L electron.
The energy is released by ejecting a second outer electron
(e.g. another M level electron). This ejected second outer
shell electron is the Auger electron. Since the energy of
the atom is quantized, the Auger electron is released with a
specific amount of kinetic energy that is characteristic of
the atom which ejected the Auger electron. This process, a

Energy levels in atom
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Figure 1
Schematic diagram of an LMM Auger process.
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Figure 2
Block diagram of the Auger spectrometer.

LMM transition, is schematically shown in Figure 1.
Other transitions, such as KLL or MNN produce Auger
electrons. The Auger process is similar to what happens
when x-ray photons are ejected to carry away the excess
energy when high energy electrons drive out inner shell
electrons. Instead of finding the wavelength of the emitted
x-rays, the energy of the Auger electrons can be used to
determine what type of atoms are releasing the electrons.

Unlike x-ray production, AES is surface sensitive. The
bombarding electrons may penetrate deep into the sample,
but the lower energy Auger electrons have a limited escape
depth. Only Auger electrons released within the atomic
layers near the surface are able to escape the sample
without losing most of their kinetic energy due to colli-
sions.

DEVELOPING THE SPECTROMETER
We had a ultra high vacuum (UHV) system to perform low
energy electron diffraction (LEED). 5 We could improve
the results of the LEED if we were able to perform AES on
the sample first to determine how clean the sample was
without removing it from the vacuum chamber. We
converted the existing equipment by building our own
power supplies, using the LEED electron gun supply and
developing our own data collection techniques and
software to run the experiment and interpret the data.

Figure 2 shows a block diagram of our apparatus. The gun
supply was set to produce electrons at approximately three
times the energy of the Auger peak for which we were
scanning. The electrons from the gun bombard the
sample, causing the surface of the sample to eject Auger
electrons. The Auger electrons pass through the grids to
be collected on the screen. A retarding potential was
applied to the grids. Only electrons with energy greater
than the retarding voltage were collected on the screen.
The retarding potential was varied under computer control
and was oscillated by the internal oscillator of the lock-in
amplifier. The current of electrons collected on the screen
went through a preamplifier 6 to the lock-in amplifier to be
analyzed and sent to the computer.

A programmable high voltage supply provided the
retarding voltage applied between the sample and the
grid.7 The output of that supply was controlled by the
combination of an input voltage and the choice of a
resistance. Changing the size of the resistance changed the
range of the scan voltage. The input voltage consisted of
the sum of the voltages from a second voltage supply 8 and
the output of the digital-to-analog converter (DAC) from
the computer. The second voltage supply controlled the
initial starting point for the scan and the DAC controlled
the range and rate of the voltage ramp.

We used a lock-in amplifier to separate the desired signal
from the background noise. The retarding voltage applied
to the grids was oscillated at the reference frequency of the
lock-in amplifier. Thus, only the signal that came from the
electrons that passed through the grids was detected by the
lock-in amplifier. The lock-in amplifier also allowed us to
take readings of the first and second derivatives with
respect to energy of the current signal by taking data at the
first and second harmonics of the reference frequency.

The first harmonic signal analysis would give a plot of
N(E), the number of Auger electrons as a function of
energy. The second harmonic signal analysis gives dN/dE
as a function of the energy of the collected Auger electron.

To match the signal from the lock-in amplifier to the
computer’s 12 bit analog-to-digital input, a circuit had to
be built to convert the bipolar 12 V lock-in output signal to
a unipolar 0 - 10 V signal. The circuit diagram for this is
shown in Figure 3.

SIGNAL ANALYSIS
Figure 4 shows the possible ways to process the signal
from the Auger spectrometer. In this case, we examined
the electrons produced when electrons with an energy of
150 eV were shot at the sample. Figure 4a shows a
reconstruction of the actual electron current as it entered
the lock-in amplifier as a function of the retarding voltage
applied to the grid. Thus, Figure 4a shows the number of
all electrons ejected from the sample with enough energy
to pass through the retarding grid (Ecjectron > € Vretard) @s a
function of retarding voltage.

Figure 4b shows a first harmonic scan of this signal: the
number of electrons as a function of energy. The peak at

1082k,

Figure 3
Diagram of the circuit used to condition the output of the
lock-in amplifier for input into the computer A/D card.
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150 eV consists of electrons that scattered elastically from
the sample. Figure 4c shows the second harmonic scan:
dN/dE as a function of energy. Auger spectroscopy is most
often performed using dN/dE scans because slowly
varying changes in the number of electrons as a function
of energy are suppressed. Rapid changes show up as a
bipolar peak that is easy to identify, even when the peak is
small. The crossover point in the bipolar peak in Figure 4c
is at 150 eV, corresponding to the maximum of the peak
shown in Figure 4b.

To test our spectrometer, we used a pure silicon crystal,
which produces a 92 eV Auger electron. We collected
data using the second harmonic scanning mode. Figure 5
is a plot of the second harmonic signal (AN/dE) as a
function of the energy of the ejected Auger electrons. The
data shown in Figure 5 was collected with an 5 pA
incident electron beam at 500 eV and a 1.0 Vs modula-
tion on the retarding grid. The scan shows ejected
electrons in the 50 - 150 eV range. Figure 5 shows a clear
peak near 92 eV. There is also a small second peak
noticeable near 72 eV. This is the expected Auger
spectrum for silicon. These results gave us confidence that
our system was working properly.

Since the silicon crystal was somewhat abused by all our
testing, we attempted to look for contamination of the
sample. We expected that there should be some residual
methane that the UHV system could not pump out. The
electron beam bombarding the sample encourages the
methane to ionize and carbon to bond to the surface of the
sample, causing a high likelihood of carbon contamination
of the sample. Carbon produces a 280 eV Auger electron.
Figure 6 shows the data for a second harmonic scan in the
energy range 250 - 350 eV with an 8.5 pA, 570 eV
incident beam and 5.0 Vs modulation on the retarding
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Figure 5

Auger spectrum obtained from a silicon crystal. The
second harmonic scan shows 92 eV (and smaller 72 eV
peak) obtained with a 5 A incident electron beam at 500
eV and a 1.0 Ve modulation on the retarding grid.

grid. The sensitivity of the lock-in amplifier was turned up
by a factor of 10 compared to the scan in Figure 5. A peak
at 280 eV is clearly evident showing that our sample has a

small surface contamination of carbon.
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current as a function of grid voltage; b) the number of electrons as a function of energy (first harmonic measurement by
the lock-in amplifier; c) dN/dE as a function of energy (the second harmonic measurement by the lock-in amplifier.
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for the preamp and screen bias. By switching between
the standard LEED cable and the modified cable, we
could switch between LEED and Auger spectroscopy.

7. We used a Kepco OPS-2000 high voltage operational
power supply. It was used in the same way as an op-
amp, but delivers voltages in the range 0 - 2000V.

8. We used an Enco Model XP-620 regulated power
supply to provide voltages in the range 0 - 30V.

dN/dE
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Professor George S. Glander
Department of Physics
Stetson University
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Figure 6
Auger spectrum searching for impurities in a silicon
crystal. The second harmonic scan shows the 270 eV
carbon Auger peak obtained with an 8.5 A incident
electron beam at 570 eV with a 5.0 Vs modulation on the
retarding grid.
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ABSTRACT
Enormous light intensities can be obtained in a high finesse Fabry-Perot interferometer cavity when it
is illuminated by a well collimated beam and tuned for maximum transmission. To demonstrate this
interesting effect in a classroom environment , we developed a mechanical shoe-string Fabry-Perot
interferometer that uses a string vibrator and fishing weights. We also present a theoretical model for
this interferometer. The shoe-string interferometer shows a build up on energy in the cavity that is

consistent with our theoretical model.

INTRODUCTION
Fabry-Perot Interferometer
Since its invention almost 100 years ago, the Fabry-Perot
(F-P) interferometer has been among the most important
tools of high-resolution spectroscopy. This device consists
primarily of two semitransparent mirrors aligned parallel
to each other. This system is a tunable spectral filter.
Derivation of the F-P transmission intensity, I, is an
excellent example of light interference principles and can
be found in every textbook on wave optics. !
2
! ~2Rcos(——‘i"ﬁ)+kl
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Where I, is the incident beam intensity, d is the distance
between the mirrors, 0 the angle of incidence of the light,
A the wavelength of the light, T the transmission coeffi-
cient of an individual mirror and R the reflection coeffi-
cient of an individual mirror. For ideal lossless mirrors:

R+T=1. (2)
Figure 1 shows the corresponding transmission curves
from Equation 1 for 4 different R values for the mirrors.

Note that 100% transmission (I; = I,) is reached every
time the ‘resonance condition’

2dcos(®=mA (m=1,2,..) 3)
is satisfied. This property is independent of the reflectivity

of the mirrors, it even works for practically non-transmit-
ting mirrors where R = 1. In such cases, the transmission

¢ [radians)
rigure I

A representative set of transmissions curves as a function

of ¢, the phase shift acquired by the beam on a round trip

between the reflectors.
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Figure 2
Schematic diagram of a Fabry Perot interferometer
showing reflected and transmitted waves.

peaks become very narrow, but total transparency is still
taking place at selected wavelengths and mirror separa-
tions.

Inside the F-P Cavity

An aspect of the F-P interferometer that has not always
been appreciated (we found no textbook treatment of the
subject) is its ability to store optical energy and ‘produce’
high light intensity inside the cavity. This phenomenon is
interesting as its analysis is helpful in learning about
energy redistribution in the interference context and
because the high intracavity power has begun to be utilized
in physics laboratories. 2

Consider a F-P interferometer (see Figure 2) made of a
pair of lossless R = (0.9998 reflectors. Assume that there is
a perfectly parallel alignment and a wide incident beam.
The complex amplitudes of the waves contributing to the
net intracavity wave moving to the right are:

At;Atre?;Arre?, .. 4)
where A is the amplitude of the incident wave, t =vT the
transmission coefficient for the amplitude and r=vR the

amplitude reflection coefficient. For waves traveling to
the left:

Atr;Atrte®; Arrie?; .. (5)
where ¢, the phase shift between consecutive transmitted
or reflected light waves, is:

4md cos(®
¢=TEO) (6)
The net amplitudes and hence the intensities of the waves
moving to the left, /;, and right, /,, can be found using an
infinite geometric series. The total intracavity average
intensity, /., obtained is:
w51, s BE]

where [, is given in Equation 1.

o

L, (7)

]

The actual value of /. depends on the phase angle ¢, but at
resonance it reaches 9999/, for mirrors with R =0 .9998.
This value makes good sense. If I, is the exiting beam
intensity, then the wave incident from the left on the exit
mirror must have an intensity of 5000/, since a single
mirror is a very simple device; R = 0.9998 means that only
0.0002 of the total incident intensity goes through, so the
incident beam is 5000 times more intense. In the steady
state, with 5000/, reaching the exit mirror, a wave of
intensity 4999/, must continuously turn back to the left.
This gives a total of 9999/, average intracavity intensity.

The extremely high intensities predicted by our treatment
may be hard to obtain in practice. These results only hold
for a truly lossless interferometer. A more realistic
treatment must include the ever present losses due to light
diffraction, absorption in the reflectors and the medium
between them. We introduce losses into our calculations
by multiplying the wave amplitude by a factor (<1) every
time the light travels between the reflectors. Although the
exact nature of the losses and the relative importance of
different contributing factors are not specified, the
treatment reflects well the anticipated effect of losing
energy from the beam. Results of these calculations are
shown in Figure 3.

Demonstrating Intracavity Intensity

The intracavity energy buildup as described above has
been observed experimentally. 2 However, mirrors of the
required quality and a laser and electronics good enough to
keep the interferometer steadily in resonance are forbid-
dingly expensive. Therefore, we asked ourselves if it
would be possible to demonstrate these effects with

a0
No loss
1204
l(‘n.
100+
0.5% loss
804
804
wol 1% loss
2% loss
204
] 5% loss
Ops 082 084 090 088 08 082 094 050 008
Reflectivity
Figure 3

Intracavity intensity buildup, 1./1,,, as a function of the
mirror reflectivity, R. Different curves correspond to
different levels of losses, defined as the percentage
amplitude loss on a single pass through the cavity.
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equipment that is inexpensive and readily available. We
decided to build an interferometer using waves on a spring
driven by a mechanical shaker. The first idea was to make
a string that had a piece of different mass/length in the
middle. Although this arrangement is similar to a solid
Fabry-Perot etalon that has different wave speed between
reflecting surfaces, it did not work well. A better F-P
string interferometer can be made by attaching small
masses to the string as partial reflectors. No reflection
would occur if the mass were zero, 100%.reflection would
occur in the high-mass limit. The point where the mass
was attached would behave like a partial reflector for
intermediate masses. One can find more discussions of
‘beaded strings’ elsewhere. 3.4

ANALYSIS OF THE STRING INTERFEROMETER
The behavior of this string interferometer is done by
examining the boundary conditions for the waves at each
of the masses. We start by finding the transmission
coefficient for the interferometer that has a section length
L of different mass/length () string in the middle. To
make this section appear later as a point mass, we must
shrink L while keeping Ll = m constant.

We model the string interferometer as shown in Figure 4.
In analogy to the quantum mechanical potential barrier
problem 5, the waves functions, excluding the common
time dependence factor e-iet |, in the three regions shown in
Figure 4 are:

@, =Ae*"+ Behi*
@ =C eh2s 4 D e ®)
(PHJ'_(’ ey He a—ikpx

where
k, = QIE — 2RV 9)
I ¥
Hy
k,=2K_2RYV
A ¥
M,
'y 4
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X=( -
X
! -t T
s
il
| ] 1]
siring H M,
0 L
Figure 4

Fabry-Perot etalon mechanical set-up with a piece of
string of different mass/length inserted and the equivalent
potential problem.

and F is the tension in the string, |t the mass/length of the
original string and p; the mass/length of the middle section
of string. The boundary conditions are that at the joints,
the string must be continuous and that the first derivative
of the wave functions be continuous. These conditions,
together with the requirement that no returning wave
comes from region III (see Figure 4) give rise to:

H =0
A+B=C+D
kiA-k,B=k,C-k,D (10)

Celt +De'el=G tﬁ:“‘lL
ik,Ce®t—ik,De*t =ik, Gelit

From Equation 10, we find that:

A =G ek [cos(k L)—*‘(%- %)bin(kzLJ - (an

Since A2 is the intensity of the incident wave and |IGI2 is
the intensity of the transmitted wave, the transmission
coefficient is:

_lof _ A _
) IA] =1+ 4(;‘2 k—?)blnz(sz..}

When Equation 9 is substituted into Equation 12, we find
that:

T.- (12)

T=l1+1 (*’J,; g) m[m#] . 13)

Now taking the limit as L gets small, while keeping Ly, =
m constant, Equation 13 becomes:

Fu
T= 5t 14
n*vim*+F, 14
where m is the mass attached to the string. As the extra
mass goes to zero, the transmission reaches 100%. As the
extra mass approaches infinity, the transmission goes to

Zero.

Figure 5
Demonstration of the mirrorlike behavior of a small mass
attached to the strong. Note that a standing wave forms
between the end of the string and the point mass.
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Determining Phases

To characterize the wave reflector completely, we must
specify not only the intensity of the transmitted/reflected
wave, but also its phase relative to the phase of the
incident wave. Notice that Equation 11 is a simple
proportionality. If the proportionality factor were real, the
phases of the incident wave and the transmitted wave
would be identical. Since the proportionality factor is
complex, these two waves are generally phase-shifted.
From Equation 11 we get in the limiting case for a point
mass:

(15)

From Equation 15 we find that the transmitted wave (G) is
phase shifted with respect to the incident wave, (A) by an
angle o, where:

T
tan(a) = 2K, —mm, (16)

When m is very small and reflection is weak, the transmit-
ted wave has the original wave phase. For substantial m,
or when the reflection is high, the transmitted wave
acquires a phase shift of almost 90",

To find the phase of the reflected wave, B, we used the
simplified boundary condition:
Q=@ atx =0 orA+B=GC (17)
Using Equation 15, and solving Equation 17 for B gives:
’ 2 L 2
B=G-G(l—‘—kLL)=E(G & L),

L I
5T 2% (18)

The proportionality factor between B and G is imaginary,
so the phase shift between reflected and transmitted wave,

Figure 6
Mechanical model of the Fabry-Perot interferometer. a)
general view,

B, is always 90° and is independent of the mass.

To determine the phase relation between the incident wave
and the reflected wave, we must add oc and B. The
reflected wave is shifted by 90° with respect to the incident
wave when m -> 0. This is initially alarming, but is
cleared by recognizing that at the same time, the reflected
wave amplitude vanishes. For a substantial m, the
reflected/transmitted phase difference reaches 180°
(opposite phase) when R is close to 1. This resembles the
behavior of highly reflective optical mirrors.

THE EXPERIMENT
To demonstrate the string interferometer, we used a
stretched wire that passes through the gap of a magnet.
When an alternating current from a function generator is
sent through the wire, the wire is driven up and down by
the Lorentz force. Small fishing line sinkers from a set
containing different sizes were used as the masses that
define the F-P interferometer cavity. Choosing the correct
mass of the ‘reflector’ is a crucial part of the demonstra-
tion since the intracavity intensity is highly dependent
upon loss factors and the transmission coefficient of the
‘reflectors’.

The first demonstration uses a single mass attached to the
wire. If the tension, frequency and distance to the mass
are adjusted to resonance, a standing wave is created
between the end of the string closer to the source and the
attached mass. As seen in Figure 5, there is no noticeable
transmitted wave. This displays the mirrorlike properties
of a point mass.

In the next demonstration, a second identical mass is
placed on the string, creating a true mechanical analog to
the Fabry-Perot interferometer. Varying the mass, the
placement of the masses on the string and the frequency of
the wave, we obtained a strong standing wave within the
cavity with no visible wave outside the cavity as shown in
Figures 6 and 7. Most of the energy is not in the vicinity
of the sources, but trapped inside the cavity. The maxi-
mum intracavity intensity was observed with F=4.0 N, ,

Figure 7
A close-up view of the central portion of the string

interferometer.  Intracavity power build-up is evident.
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= 3,08 gm/m, ® = 43.72 Hz, and mass m of each of the
‘reflectors’ = 7 gm.

Substituting these values into Equation 14, we geta
transmission coefficient of 7= 0.016. Assuming no loss,
the reflection coefficient R = 0.994. Using ‘eye ball’
measurements, we estimated the amplitude ratio between
the intracavity wave and the incident wave to be between
10 and 20. This gives an intracavity intensity increase
between 100 and 400. From the graph shown in Figure 3,
we found that to obtain such an intracavity intensity
increase, one needs a reflectivity coefficient of approxi-
mately 0.995, consistent with our calculated reflection
coefficient.

This is a simple and effective demonstration of the energy
trapping characteristic of the Fabry-Perot cavity. The point
masses act as partially reflecting mirrors. The string
interferometer displays the intracavity intensity increase at
resonance. The simple wave model of this system models
the experiment well.
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ABSTRACT
We studied numerically the transport, energy loss due to synchrotron radiation, inverse Compton
scattering and adiabatic deceleration and the energy gain due to diffusive and shock accelerations of
solar flare electrons. We solved the transport equation in time, space and momentum variables using
the numerical method of lines with an implicit integration routine. Steady state solutions of the
transport equation are compared to satellite observations of solar flare electrons in the energy range of
thermal to relativistic electron energies. In both calculation and observation, a two index power law
spectrum is seen for the electrons, with a clear break in the kinetic energy at 100-200 keV. While this
break in the spectral index has been attributed to two acceleration mechanisms, in this study we show
that a second order Fermi mechanism at the flare site can describe the electron data if the break is
attributed to the accelerating efficiency of the flare itself.

INTRODUCTION
To space physicists interested in the transport of energetic
charged particles, the solar system presents a unique in situ
laboratory where direct observations of such particles can
be made either near the earth, in deep space or over the
solar poles. In such environments, a wide range of particle
species and energies can be detected by instruments on
board satellites and spacecraft. These measurements are
often collected in real time. Shock waves, whether at the
sun, in the sun, in the earth’s magnetosphere, or at the edge
of the solar system, are known to be powerful accelerators
of energetic particles. In the heliosphere, a solar [lare and
its associated shock waves easily can accelerate particles
to suprathermal energies. Unlike our cleanly controlled
ground based particle accelerators, we do not have control
of either the method or the types of particles accelerated in
these natural accelerators.

Michael Edwards is a first year Master student at the
University of Denver in the Department of Physics and
Astrononty. This research was begun when he was a
Junior physics and math major at Roanoke College.
This paper won Roanoke College's 1997-98 Guy
Echman Award for best student research paper. In his
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1o his collection of classic science fiction novels.

Because of the inherently passive nature of measurements
of the output of these natural accelerators, models of both
acceleration and transport mechanisms have to be devel-
oped before any meaningful interpretation of the collected
data can be made. Many studies have suggested that there
are several, perhaps distinct, acceleration processes at
work in a single solar flare. 1-6 Even in the impulsive or
flash phase of rather small flares, electrons can be acceler-
ated to suprathermal energies of between 10 and 100 keV
by transferring stored magnetic energy to the electrons via
a magnetohydrodynamic interaction. A second accelera-
tion method closely associated with shock waves in the
solar atmosphere is thought to be able to accelerate
particles to MeV energies and higher.

A study of wide energy range (20 keV - 20 MeV) electron
data was conducted using data from the near earth satel-
lites IMP 6, 7 and 8. 6 Care was taken to minimize the
effect of interplanetary contamination such as from Jovian
electrons. This study fit the electron spectrum above 100
keV with two power laws, one between 100 keV and |
MeV and a second for the data above 1 MeV. The study
suggested that these two power laws indicated the pres-
ence of two distinct acceleration mechanisms taking place.
The data showed that this break in the energy spectrum did
not seem to change in any appreciable way from flare to
flare. The authors suggest that a single high energy
acceleration phase may dominate while the other phase
may act as an injection source of lower energy electrons to
the high energy phase. Correlations of the electron data
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with radio, x-ray and gamma ray observations of the same
events were consistent with acceleration by the flare shock
wave as it passes the solar corona.

Recent theoretical discoveries in the acceleration and
transport of charged particles in space and astrophysical
plasmas suggest that both of the processes discussed are
diffusive in nature. 7 If so, both the acceleration and
transport processes are not expected to retain any memory
of contributing mechanisms because all diffusion pro-
cesses are memory-less stochastic processes. 8 In steady-
state conditions, one is essentially sampling one or an
incoherent sum of a number of processes. The distinction
between an average process and a true single process is
inherently blurred. In transient time-sensitive conditions,
the distinction is in principle manifested if the physical
parameters of the contributing mechanisms are both time-
sensitive and act over vastly different time scales. Conse-
quently, the modeling of solar flare events without this
aspect of the flare acceleration mechanisms is not expected
to be able to make any such distinctions.

THEORY OF STOCHASTIC TRANSPORT AND
ACCELERATION

The transport theory of energetic charged particles in the
heliosphere is essentially a statistical description of the
motion of the particle using the evolution of its phase-
space or number density functions in space and time,
subjected to the appropriate conservation laws. The theory
describes the dynamics of an average particle represented
by the kinetics of the particle’s density function. The
average particle, or the density function, is subjected to
four fundamental processes as well as the conservation
laws. These processes are thought to cause transport in an
isotropic diffusive model. The four transport mechanisms
are: 1) diffusion due to the irregular component of the
heliospheric magnetic field; 2) convection due to the
outflowing solar wind plasma that carries with it the
frozen-in heliospheric magnetic field lines; 3) drift due to
the large scale curvature and gradient of the regular
component of the heliospheric magnetic field; and 4)
adiabatic energy loss due to the diverging solar wind
plasma. In our study, we ignore process 3) because drift
effects play a small role in the transport of solar energetic
particles to 1 AU 10. We include the acceleration due to
diffusion in momentum space and due to solar flare shock
waves. Momentum loss terms important for the electrons
due to synchrotron radiation and inverse Compton
scattering are included in our analysis.

The mathematical model for this transport theory is written

as a partial differential equation in time, momentum and
space as: 1

af _1]0 aff, 112 df  ,dp
‘(}F—F‘BF!JD”W +p:‘a{FP29Fma};+!? d_ff

% | 3 Y0
—V,-V.wf+§(V,-V.-..)pgf;. (N

where fir,p,t) is the phase-space density function of the
electrons depending on the radial position r and momen-
tum p at time ¢, and D is the diffusion coefficient that
depends on r and p. The density function is related to the
observable electron differential spectrum j by:

j(rpt)=p? f(rpd) . )

The first term in Equation 1 describes the spatial diffusion
of electrons for a spherically symmetric diffusive process
controlled by the radial diffusion coefficient D, :

D,,(r,p) = Dy(p) cos*(y) + D,(p) sin’(¥) , 3)
where Dy(p) is the diffusion coefficient parallel to the
magnetic field lines in the local solar wind frame, D (p)
is the diffusion coefficient perpendicular to the field lines
and W is the angle between the field line and the radial
direction, given by:

>
=tan"'|——|, -+
V=R o @
where €, is the rotation speed of the sun about its axis
(3x10-6 s-1) and V., (r) is the solar wind radial speed
profile: 12
, (&)

2y |5 AL
Vol =% V..lzlanhf'/ o7, 1

where r, is the radius of the sun. Figure 1 shows a plot of
Equation 5 with a value of V,, = 700 km/s. Note that the
solar wind has a supersonic speed of 415 km/sec for r =>
100r, .

From the quasi-linear theory for the heliospheric transport
of energetic charged particles, the parallel diffusion
coefficient can be written as: 9
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Figure ]
Solar wind speed as a function of radial distance plotted
according to Equation 5. The data points are taken from
Coles, WA., et. al., J. Geophys. Res., 96, (1991), p. 13849.
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where R is rigidity (the total momentum per charge),

B =v/c where v is the speed of the electron and ¢ is the
speed of light, and T is the spectral index of the fluctuating
turbulent magnetic field.

The turbulence spectrum essentially is a plot of energy vs.
frequency. In the so-called Kolmogorov spectrum, the plot
follows a power law with an indes of -5/3, while for the
so-called Kraichnan spectrum, the index is -3/2. In
Equation 6, when the rigidity is expressed in units of giga
Volts, D, takes on a value of =1022 cm2/s; {=5/3 fora
purely Komlogorov spectrum and { = 1.5 for a Kraichnan
spectrum.

The last term in Equation 6, the ratio of the strength of the
solar magnetic field at earth (which is around 50 pGauss)
to the solar magnetic field at a position r is included to
ensure that the electrons remain tied to the magnetic field
lines. 13 D, is assumed to be a small fraction of D .

The radial dependence of the solar magnetic field, B(r), is

taken to be: 14
B, .
> for r>r,
B(r) =< r .
B, forrsr,

!

(7

where ryis the radial extent of the solar flare (=1012 cm),
and Byis the strength of the solar magnetic field at the
solar flare site (< 400 Gauss), and B,, is a constant.

The second term or acceleration term in Equation |
describes diffusion in momentum space that is controlled
by the diffusion coefficient, D, which is independent of r
or t. For a second-order Fermi acceleration mechanism,
the dependence of the diffusion coetficient on the momen-
tum is: 15

2

&P
D.up{l”) = -i_—ﬁ_ 1
where o is a constant retlecting the efficiency of the
acceleration process. A typical value for otis 0.025 s-1 in
solar flare stochastic acceleration. !5

(8)

The third term in Equation | describes the change in
momentum of the electron. The losses are due to the
motion of the electron in the ambient magnetic field
(synchrotron radiation) as well as the interaction with the
radiation field (inverse Compton scattering). These two
momentum-loss terms are written as:10

dp £e) Y ©

dt 8 Be’

where 7 is the relativistic Lorentz factor for the electron
and p(r) is the photon density in the radiation field. The
photon density in the radiation field is proportional to the
ion density p;(r) given by:

= const +p(r)

Tousx

P, (rL)-"ﬁ for r>r,
pir) = < )

Py forr<r,

(10)

where p, is a constant and pyis the ion density at the flare
site (109 cm-3).

The momentum gain term is due to the shock or first order
Fermi acceleration, given by 17

dp _xV,’

dr Kain 4 Dli s
where K is the volume filling factor of the shock waves
and

(11

v‘“ = mp f ¢
is the shock speed, Ty the ambient temperature of the solar
flare site, m,, the mass of the proton and k the Boltzmann

constant.

(12)

The fourth and fifth terms (convection and adiabatic
deceleration terms) describe the motion and momentum
loss respectively due to an expanding plasma characterized
by an expansion bulk velocity vector . The magnitude of
the bulk velocity vector is given by Equation 5 and is
radial:

V(A =V () F . (13)
To complete the mathematical model, one needs to specify
physically meaningful initial and boundary conditions for
f. At the flare site when # = 0, we assume f, to be a
Maxwellian distribution in p characterized by the tempera-
ture of the site Tz The average thermal energy of the
electrons prior to any acceleration or energy losses is
assumed to be 3/2 k Ty. For boundary conditions, we let:

f=2faror

af

a};—)Oasr-»r_ ; (14)
In our case r.. is just a few AU.
For the boundary conditions in p, we let
g%—-w asp—p.andp—op,, (15)

where p,, is a lower limit for p that is lower than the
corresponding thermal energy and p.. is an upper limit for
p at which f is unaffected by the transport process (=104
keV/c).

NUMERICAL SOLUTION
We integrated Equation | using the numerical method of
lines. 18 The time variable is kept “continuous™ and a
finite differencing scheme is applied to the other two
variables at different points along a “time line” which is
then integrated. The advantage of separating the time
variable from the other two variables is that the stability
issue of the solution is separated from the accuracy issue.
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Figure 2
Electron flux as a function of momentum (left) and kinetic
energy (right). The dashed line is the initial thermal
distribution at the site of the solar flare corresponding to a
site temperature of Ty= 5x106 K and a magnetic field
strength of By= 100 Gauss. The solid lines are the steady
state solutions to Equation | at | AU with efficiencies ot =
0.5, 1.5, 3.0 min-! (top to bottom). Dashed dotted straight
lines (right) are fits corresponding to the o= 1.5 min-1
case (the 'typical’ flare case). The straight lines intersect
around the electron kinetic energy of 150 keV.

Stability is an issue of concern for stiff partial differential
equations, such as Equation 1, where the various terms
have many orders of magnitude separation in strengths at
widely separated radial and momentum points. Simple
eigenvalue tests can reveal the stiffness of such equations.

All first-order and second-order diffusion related deriva-
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Figure 3
Same as Figure 2 but with o = 1.5 min-! and By = 2, 100,
400 Gauss. All solid lines (solutions at 1 AU) are
essentially identical. 2 Gauss is a quiet time strength of
the solar magnetic field at the solar surface. 400 Gauss is
the maximum allowed strength according to hard x-ray
and microwave observed emissions from the flares. 20

tives of fin the right hand side of Equation 1 are evaluated
at a certain ¢ using a five point centered differencing
scheme accurate to fourth order. All first-order convection
related derivatives are evaluated using a five point upwind
or downwind biased differencing scheme. All field,
diffusion and convection vector terms, along with their
first and second order derivatives, are evaluated analyti-
cally. Once all of the derivatives of f are collected at all
points along the time-line, they are integrated using the
unconditionally stable and extremely efficient sparse
Jacobian matrix techniques of Hindmarsh that is appropri-
ate for stiff PDEs. 19 The accuracy in this integration
scheme is completely determined by the user.

We used an (r;,p) grid as a 37 x 37 matrix with logarithmi-
cally spaced points. This required the solving of 999
ODE:s at all t points before time integration. The time
integration essentially is solving a 999 x 999 sparse
matrix. Due to the sparsity of the Jacobian matrix, only
about 11,000 of almost 1 million total points needed to be
evaluated, making this an most efficient algorithm. To
reach a steady state solution required a mere 17 time steps
from ¢ = 0 to £ = 70 min. This required less than 4 minutes
of CPU time on a DEC-ALPHA 250 machine.

DISCUSSION

The output of our model was both transient and steady
state solutions to the transport equation for the particular
parameters used in that run. Figure 2 shows a plot of the
original thermal distribution and the steady state solution
at 1 AU vs. momentum and Kinetic energy. The steady
state solution at 1 AU exhibits the double power law which
was previously found. ¢ The break between the two power
laws is in the same 100-200 keV range as the satellite data.

Figure 2 also shows results for two runs where the
efficiency of the flare was altered. Lowering the effi-
ciency drops the break into the 80-90 keV range, while
raising it, pushes the break up to the 400 keV range. This

10° -~y T 10’ M SR ey ey
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Figure 4 '
Same as Figure 2 but with & = 1.5 min-1 and Ty= 1,5,10
MK (left to right). Solid lines are solutions at 1 AU.
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seems to indicate that the break is a natural outgrowth of
the efficiency of the flare in accelerating relativistic
electrons rather that something caused by a separate
acceleration mechanism.

The spectrum for a wide range of ambient magnetic field
strengths (2 to 400 Gauss) is shown in Figure 3. The
distributions show no variation from the ‘typical * flare
graph with an efficiency of 1.5. This indicates that the
strength of the magnetic field is not a factor in the position
of the power law break.

Figure 4 shows the spectrum characteristic of a range of
flare temperatures from 1 to 10 MK. For temperatures
lower than 5 MK (that of a typical flare), the slope of both
power laws decreases and the point of intersection moves
down into the 50 keV region. For temperatures greater
than 5 MV, the slopes increase, but the point of intersec-
tion remains in the 100 keV region. The temperature at the
flare site is a rather sensitive parameter in the transport
process. From independent results, we know the tempera-
ture of the flare site is not an entirely adjustable parameter.

Figure 5 shows the spectrum for electrons without the
diffusive and shock accelerations, the two methods
suggested in previous work. © Only the low energy
electrons were affected by the shock in this case. The very
low energy electrons gained energy as they diffused
through the solar wind and the slightly higher energy
electrons lost some energy. When the shock acceleration
was omitted, there is no appreciable difference in the
spectrum from the ‘typical’ flare solution. This suggests
that diffusive acceleration is a dominant process in
accelerating solar flare electrons. This indication is
supported by the spectrum shown in Figure 6. This is
spectrum at 1 AU for a ‘typical’ flare after only 5 minutes

100 o S—
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10~ !} Shock Acceleration

Electron Flux
=
Electron Flux

=]

w074

1

S5x106 K.

100 1000
Momentum [KeV/e|

1073

-6

0.1 1.0 10,0 100.0 1000.0
Kinetie Energy [KeV]

10

Figure 5

Same as Figure 2. The solid lines are solutions at 1 AU
with no diffusive acceleration (o = 0). Dotted lines are
solutions at 1 AU with a = 1.5 min-1 but with no shock
acceleration. Both sets have By = 100 Gauss and Ty =

29
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Figure 6

Same as Figure 2 for a typical flare (¢ = 1.5 min-!, By =
100 Gauss and Ty = 5x106K). Dotted lines are transient,
after 5 minutes of onset of the flare, while the solid lines
are steady state solutions at 1 AU.

rather than at the steady state time of approximately 70
minutes. The two spectra, one at 5 minutes and one in the
steady state, are qualitatively similar other than that the
shorter time solution has slightly more energy overall.
This result indicates that the approach of the transport to
equilibrium is quite rapid given that the typical duration of
a solar flare is about 2 hours.

SUMMARY
Our analysis of both transient and steady state solutions at
1 AU of the transport equation show that:

* The observed break in the spectral index of solar flare
electrons can be attributed to the acceleration efficiency of
the dominant accelerating process at the flare site. This
process is diffusive rather than one due to flare shock.

* The location of the break in the spectral index at 100-
200 keV electron energy is quite sensitive to this effi-
ciency, but is insensitive to other salient site parameters
such as the strength of the ambient magnetic field.

* The rapid approach to steady state suggests that any
second dominant acceleration mechanism would have to
have a very short time scale and be very strong.

= We have identified the ‘typical’ flare to have an effi-
ciency of 1.5 min-! at a temperature of 5 MK. These
values are almost independent of the strength of the
ambient magnetic field and the site’s ion and photon
densities.

« Since the transport is inherently memory-less and
approaches steady state rapidly, a second acceleration
mechanism is not needed to describe the solar flare
electron data. Such a mechanism is perhaps difficult to
justify on both physical and mathematical grounds.
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PREPARING A MANUSCRIPT FOR PUBLICATION
Rexford E. Adelberger, Editor

Perhaps the most important thing for you to keep in mind when
you write a manuscript which you intend to submit for publica-
tion to the Journal of Undergraduate Research in Physics is that
the audience that will be reading the paper is junior or senior
physics majors. They are knowledgeable about physics, but
unlike you, they have not spent as much time trying to under-
stand the specific work which is being reported in your paper.
They also can read English well, and expect the paper to be
written by a colleague, not a robot or an "all-knowing' computer.
There is a big difference between the comments you write in the
margin of your lab notebook or what you might write in a
technical brief and what you should present in a paper for
publication in a scientific journal.

There is a significant difference between a Journal article and
keeping a journal. Your laboratory data book should be the
journal of what you did. It contains all the data, what you did
(even if it was an attempt that turned out to be wrong), as well as
comments as to what you were thinking at that time. The Journal
article is an discussion of how you would do the research without
excursions along blind alleys and hours spent collecting data that
were not consistent. The reader does not have to be able to
completely reproduce the work from the Journal article. The
reader should be able to understand the physics and techniques of
what was done.

How a person uses Journal articles to find out about new ideas in
physics is often done in the following way. A computerized
search, using key words in abstracts, is performed to find what
work others have done in the area of interest. If the abstract
seems to be about the question of interest, the body of the paper
is tracked down and read. I the reader then wants to find out the
finer details of how to reproduce the experiment or the derivation
of some equation, the author of the paper is contacted for a
personal in-depth conversation about the more subtle details.

The general style of writing that should be tfollowed when
preparing a manuscript for publication in the Journal is different
from what you would submit to your English literature professor
as a critique of some other work. The narrative of the paper is
intended to do three things: 1) present the background necessary
for the reader to appreciate and understand the physics being
reported in the paper; 2) discuss the details of what you did and
the implications of your work; 3) lead the reader through the
work in such a way that they must come to the same concluding
points that you did. When finished with your paper, the reader
should not have to go back and try to decide for themselves what
you did. Your narrative should lead them through your work in
an unambiguous manner, telling them what to see and understand
in what you did. The interpretation of the data or calculations
should be done by the writer, not the reader. The interpretation of
your results is the most important part of the paper.

You should take care to make sure that the material is presented
in a concise logical way. You should make sure that your
sentences do not have too many dependent clauses. Overly
complicated sentences make the logic of an argument difficult to
follow. You should choose a paragraph structure that focuses the
attention of the reader on the development of the ideas.

A format which often achieves these aims is suggested below:
ABSTRACT : An abstract is a self contained paragraph that

concisely explains what you did and presents any interesting
results you found. The abstract is often published separately
from the body of the paper, so you cannot assume that the reader
of the abstract also has a copy of the rest of the paper. You
cannot refer to figures or data that are presented in the body of
the paper. Abstracts are used in computerized literature
searches, so all key words that describe the paper should be
included in the abstract.

INTRODUCTION: This is the section that sets the background
for the important part of the paper. It is not just an abbreviated
review of what you are going to discuss in detail later. This
section of the narrative should present the necessary theoretical
and experimental background such that a knowledgeable
colleague, who might not be expert in the field, will be able to
understand the data presentation and discussion. If you are going
to use a particular theoretical model to extract some formation
from your data, this model should be discussed in the introduc-
tion.

Where appropriate, factual information should be referenced
using end-notes. When presenting background information, you
can guide the reader to a detailed description of a particular item
with the statement such as: "A more detailed discussion of
laminar flow can be found elsewhere 1". If you know where
there is a good discussion of some item, you don't have to repeat
it, just guide the reader to the piece.

How one proceeds from this point depends upon whether the
paper is about a theoretical study or is a report on an experiment.
1 will first suggest a format for papers about experimental
investigations and then one that describes a theoretical deriva-
tion.

Experimental Investigations
THE EXPERIMENT: This section guides the reader through
the techniques and apparatus used to generate the data. Sche-
matic diagrams of equipment and circuits are often easier to
understand than prose descriptions. A statement such as "A
diagram of the circuit used to measure the stopping potential is
shown in Figure 6" is better than a long elegant set of words. It
is not necessary to describe in words what is shown in a diagram
unless you feel that there is a very special part which should be
pointed out to the reader. If special experimental techniques
were developed as part of this work, they should be discussed
here. You should separate the discussion of the equipment used
to measure something from your results. This section should not
include data presentations or discussions of error analysis.

DATA PRESENTATION AND INTERPRETATION OF
RESULTS: This is the most important section of the paper. The
data are the truths of your work. This section should lead the
reader through the data and how errors were measured or
assigned. The numerical data values are presented in tables and
figures, each with its own number and caption, e.g.. "The results
of the conductivity measurements are shown in Table 3". It is
difficult to follow narratives where the numerical results are
included as part of the narrative. Raw, unanalyzed data should
not be presented in the paper. All figures and tables should be
referred to by their number. Any figure or table that is not
discussed in the narrative should be eliminated. Items which are
not discussed have no place in a paper.

A Theoretical Study
THE MODEL: This part should consist of a theoretical
development of the constructs used to model the physical system
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under investigation. Formulae should be on separate lines and 2 el
numbered consecutively, The letters or symbols used in the Shane Emir;:uenm T?xeo:e‘;:ca
equations should be identified in the narrative, e.g.. The portential
can be approximated as: 38 5.15+01 5.13

W=Z-op) , (1 45 1.89+02 1.93
where Z is the number of protons and G is the screening constant 3P Mﬁ'ﬂb! ; 3.02

{4

that is dependent on the charge density, p, of the inner electrons
of the K and L shells. If you wish to use this formula at a later
time in the narrative, you refer to it by its number, e.g.. "The
straight line fit shown in Figure 3 means that we can use
Equation 1 to extract a value of..."

CALCULATIONS: This section presents a summary and
discussion of the numerical results calculated from the model.
The results should be presented in tables or graphs, each with a
caption. A table or graph that is not discussed in the narrative
should be eliminated. Data that are not interpreted by the writer
have no place in a paper. One should reference numerical results
that are used in the calculations and come from previous work
done by others .

The following sections pertain to both types of papers.
CONCLUSIONS: It is indeed rare that one can come to clear
and meaningful conclusions in one paper. 1 do not know of many
papers where this section should be included.

REFERENCES: All references, numbered in order from

beginning to end of the paper, are collected together at the end of

the paper. You should be aware of the following format:

If the reference is a texi-

1. A.J. Smith and Q.C.S. Smythe, Electromagnetic Theory,
Addison Wesley, New York, (1962), p. 168.

If the reference is a journal-

2. 1. Boswain, Journal of Results, 92, (1968), pp. 122-127.

If the reference is unpublished-

3) R.J. Ralson, private communication.

ACKNOWLEDGMENTS: This short section should acknowl-
edge the help received (that is not referenced in the previous
section) from others. This is where you would give credit to a lab
partner or someone in the machine shop who helped you build a
piece of equipment.

OTHER ADVICE
TABLES AND FIGURES are placed by the layout editors at the
corners of the page to make the format attractive and easy to
read. Often a figure is not on the same page as the discussion of

e ———— . . R
0.4 0.6 0.8 1.0 1.2 1.4 1.6
Time in seconds
Figure |
A graph of the measured thrust of a D-2 model rocket engine as a
Sfunction of time. The line drawn is the least squares fit straight
line to the data.

Energy states found in the numerical search. The accepted
values for these states are also listed.

the figure. Each table or figure should be numbered and have a
caption which explains the figure. Readers scan papers by
looking at the figures and data tables before they read the
narrative of the work. Take care to put enough information in the
caption of a figure or table so that the reader can get some feeling
for the meaning of the data presentation. All lines shown on
graphs should be identified, e.g.. "The dashed line is drawn to
guide the eye" or "The solid line is a fit to the data using the Ising
model"

An example of a graph of a set of data is shown in Figure 1. The
graph is sized by the range of data points. The bottom left point
does not have to be the point (0,0). Error bars are shown with the
data points. A graph with all the data points clustered in one
small corner and lots of white space does not help the reader get
a feeling of the dependence of your data. Be careful that the
figures you present are not too busy; too much information on a
figure makes it difficult to pick out the important parts,

NUMBERS AND UNITS Any experimentally measured data
presented in tables (such as shown in Table 1), should include an
uncertainty. You should use scientific notation when presenting
numbers, (7.34 = .03)x107 eV. Take care that you have the
correct number of significant digits in your results; just because
the computer prints out 6 digits does not mean that they are
significant. You should use the MKS system of units.

STYLE It is often helpful to make a flow chart of your paper
before you write it. In this way, you can be sure that the logical
development of your presentation does not resemble two
octopuses fighting, but that it is linear.

One generally writes the report in the past tense. You already did
the experiment. You also should use the third person neuter case.
Even though you might have done the work by yourself, you use
"we'". e.g.. "We calculated the transition probability for.." It is
often confusing when you begin sentences with conjunctions.
Make sure that each sentence is a clear positive statement rather
than an apology.

There are a few words or phrases you should be careful of using.
Fact - this is a legal word. I am not sure what it means in
physics. Proof or prove - These words are meaningful in
mathematics, but you can’t prove something in physics, espe-
cially experimental physics. The purpose of this experiment is...
Often it is necessary to do the experiment to complete the
requirements for your degree. You do not need to discuss the
purposes of the experiment. One can easily show that... - Don’t
try to intimidate the reader. What if the reader finds it difficult to
show? Remember that the reader of your paper is a senior in
college! It is obvious that... or One clearly can see.... - Such
statements only intimidate the reader that does not find your
work trivial. What is obvious to someone who has spent a lot of
time thinking about it may not be obvious to the reader of your
paper. Data is the plural form of the noun datum. “The data are
...”" or “The data show that ...."
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