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A QUANTUM MONTE CARLO STUDY OF He,Cl, CLUSTERS

Darin P. Diachin*
Department of Physics and Astronomy
Arizona State University
Tempe, AZ 85287-1504
received November 9, 1993

ABSTRACT
The results of variational and Green's function Monte Carlo calculations for the ground state properties
of HexCl, clusters are presented. Variational ground state energies are provided for n ranging from 2 to
28 as well as Green’s function ground state energies for n = 8,18 and 28. Radial probability distribu-
tions are consistently broad in shape for all n, with He atoms showing a peak in probability at approxi-
mately 4.5A from the Cl, center of mass. Angular distributions are spherical for n>15, which indicate

that the clusters take the form of a droplet.

INTRODUCTION
Several advances have been made in recent years in the
study of van der Waals clusters composed of rare gas
atoms and a diatomic molecule. A wide array of such
clusters have been discovered composed of rare gas
species with Cl,, Bry, I, ICI and HF molecules. High
resolution spectroscopy has been used to isolate vibra-
tional and rotational excited state spectra of several of
these molecules, some of which have been successfully
reproduced using classical or semiclassical theoretical
systems.

Laser pump probe techniques were used to obtain rota-
tional excited state spectra for Ne,Cl, and Ar,Cly, which
could be modeled using a rigid rotor representation. ! In
both cases, a “distorted tetrahedron” was found to produce
the closest fit to the observed spectra. However, the same
technique failed to reproduce experimental results for
He,Cl,. In this case, it was postulated that no average
molecular structure existed due to an unusually small
separation between vibrational and rotational quantum

Darin is a senior at the Colorado School of Mines
and is majoring in applied mathematics. He is
currently developing sensor fusion software with a
grant from the Colorado Advanced Software
Institute. He intends to pursue his graduate work
in applied mathematics or computational physics.
This work was conducted under the Arizona State
University Research Experience for
Undergraduates in Condensed Matter Physics.

configurations. The resulting cluster was presumed to
have large fluctuations in the ground state structure. This
was supported by the fact that all four rigid rotor structures
that were investigated resulted in potential energies below
the estimated zero point energy of the complex.

This research, as well as similar results for other floppy
systems, motivated a development of a quantum mechani-
cal model for He,Cl, and He3Cly. 3 The results reflected a
great deal of variability in the ground state probability
functions for various positional configurations. In the case
of He,Cl,, radial distances r, as defined by Figure 1,
proved to be highly
probable between 3A
and 5.5A. He-He
distances ranged from
2A to 10A with a
maximum at approxi-
mately 7A. Angular
positions, 0, had a
high probability
between 60° and
120°, with a maxi-
mum probability at
90°.

o= H€;

Cl

Figure 1
A model showing the two degrees of freedom studied. r is
a measure of the radial distance of the helium atom to the
center of mass of the chlorine molecule. 6 represents the
angle that the helium atom makes with respect to the axis
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This work extends the computer programs used to model
the He,Cl, cluster to investigate the dynamics of these
floppy probability distributions as the number of He atoms
are increased. Tendencies of the He atoms to crystallize or
remain liquid as well as the locus of the chlorine molecule
within the cluster are addressed.

METHODOLOGY
The two techniques used to compute the ground state
properties of the He,Cl, clusters were the variational and
the Green’s function Monte Carlo (GFMC) methods.
While both methods are deemed Monte Carlo due to their
use of random variable sampling, they are two separate
algorithms and require separate treatment. More details
about these methods can be found elsewhere. 34,56

Variational Monte Carlo Method

The variational method essential produces two results: an
upper bound for the ground state energy of the cluster, E,,
and the distribution configurations of the atoms themselves
computed from a carefully considered trial wave function,
wr. The first priority of this method is determining the
form of the wave function suitable to approximate the
actual ground state wave functions. An estimation of E,
can then be calculated by employing the Rayleigh-Ritz
variational principle:

[ we@ v ar
[ v ar

where R is a vector representing the 3N coordinates of the
N particles.

(H)=E,< ’ M

The trial wave function used for this work was the Bijl-
Dingle-Jastrow wave function (commonly referred to as
the Jastrow wave function), which assumes that the wave
function can be represented as a product of two-body
correlations:

vi® =17 -7 )
where |r"',- - F;| is the distance between atoms, and fj; are

the Jastrow factors, which, in this case, were limited to
three forms corresponding to He-He, He-Cl and CI-Cl
interactions. A detailed account of the construction of the
three Jastrow factors can be found elsewhere 3,6. There are
several interesting qualities that their final form maintains.
When any two atoms come close together, it is assumed
that their pairwise potential dominates the many-body
Schrodinger equation. Therefore, as the distance between
atoms i and j decreases, f;; and subsequently yr g0 to zero.
Conversly, as an atom strays far from the center of mass

of the cluster and the relative potential decays, the wave
function also decays. In the Jastrow form, yr is forced to
decay as:

e_'fl?i “'Tml

Yr(R) = 3)

I7i-7al

where

mL,

ﬁl

Here, E, is the binding energy of the atom and m is the
reduced mass of the atom, both with respect to the
remainder of the cluster. Using the He,Cl, cluster as an
example, when a single He atom is found at a relatively
large distance x from the center of mass, its corresponding
Jastrow factor needs to dominate the wave function, or:

-l S =~ S ©)
We assume that the bulk of the binding energy was due to
the He-Cl interaction3, so the limit as x becomes large of
frie.e(x) was set to 1, this leaving:

fuo D=\ . (6)

To obtain the best approximation for the expectation value
for the Hamiltonian, the parameters of the Jastrow factors
were varied in search of a minimum energy. Morse
potentials were found to produce the best results for the
C1-Cl and He-Cl interactions. Experimental results 2
guided us to use the Hartree-Fock dispersion potential for
the He-He interactions.

¥= @

The actual Rayleigh-Ritz integral was evaluated using the
Metropolis, Rosenbluth, Rosenbluth, Teller and Teller
(M(RT)2 algorithm. 6 The M(RT)2 method samples
probability distributions, so the integral of Equation 1 has
to be manipulated into the form:

H y;(R) ‘l’rz(R ) dR

(H)= ©
wT(R) I WT'I(R) d.R
to be evaluated. In this case, the quantity:
2
P(R) E_M_ @®)
I v (R) dR
maintains the properties of a normalized probability
density. Using an acceptance/rejection scheme, the
integral itself is evaluated by summing
"l’T(Rm)

and dividing by the number of iterations M. Rye is
obtained for each iteration by either using the value of R,
or accepting a new configuration obtained by randomly
sampling small changes in each coordinate of Ry -
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Sampled positions are accepted with a probability which is
defined as:

.|, P(R
Add—nuw = m".{I!P(Zij) . (10)
This definition dictates that if the new configuration has a
higher probability, 7(Rnew)? ,than the old, then

A iz new =1. All configurations are saved, not only to be
analyzed directly, but to be used in the GFMC calcula-
tions.

Green's Function Monte Carlo Method

With the GFMC, the ground state energy is computed
exactly. While this is useful in itself, the result provides a
qualitative measure of the accuracy of the variational trial
wave function. The closer the ground state energy
computed by the variational method is brought to that of
the GEMC, the closer the model may be assumed to
represent the actual wave function and subsequent
configuration distributions. Failure to bring these values
to within acceptable levels would raise questions about the
accuracy of the unmodified Jastrow wave function.

The algorithm involves solving the Schrsdinger equation:
(H + EDY(R,D) = (E,+EDYR,) aan
with y(R,t=0) assumed to be known and the constant Et
chosen to keep (E, + E7) >0. This is done by casting the
equation into integral form and iterating the results:

YR +AL) =j VR 1) GRR AR

where G(R,R’A1) is the short-time approximation Green'’s
function. 45 In this case, W(R,¢=0) only needs to be a
function of R. This is where the variational data become
useful.

(12)

Since the configuration distribution produced with the
M(RT)2 method represents a set of discrete positions for
the N atoms in the cluster, with sufficiently large M, this
distribution can be viewed as a set of discrete configura-
tions which approximate the probability density itself.
From this, W(R,t=0) can be tabulated in the form:

W(R1=0)= [ 8RR -R) YR =0 AR

This equation is simply an expression of the idea that
W(R,1=0) is represented by a large number of & functions
with coefficients y(R t=0).

(13)

The short-time approximation Green’s function is devel-
oped under the context of what has been termed diffusion
Monte Carlo, which appears surprising at the onset. The
idea is that the time dependent Schrdinger’s equation can
be interpreted as a diffusion equation in imaginary time.
Fortunately both the Green’s functions and entire algo-

rithms for solving diffusion equations numerically have
been known for many years and are directly applicable.

The formal solution to the time dependent Schrédinger
equation is:

v =S o exp- ) (14)

where ¢; and E; are the eigenstates and eigenvalues for the
time independent Schrédinger equation as well. The key
is that in imaginary time, this solution is a sum of expo-
nentially decaying terms. A diffusion process in imaginary
time would result in the exponential decay of successive
eigenstates with the ground state the last to degenerate.
Since the constant, E7, can be adjusted without altering ¢; ,
the ground state eigenvalue of the equation can be shifted
to zero to keep the ground state wave function from dying
off entirely. The ensuing iteration of Equation 12 results
in a wavefunction which represents the ground state wave
function as ¢ becomes sufficiently large.

The final form of the Green’s function is:

GR,R’, Al = 1

(R —m*)

ex (- H{wm) +v(®) -E }m) p=E, s
p 2 T » “Im’ )
and can be interpreted as the probability density describing
the movement of a point source. If At is kept sufficiently
small, the probability of a 8 function propagating fromR’
to R in At can be sampled from the Gaussian part of the
Green's function. The exponential part can be viewed as a
weighting term. However, if At is large, the change in
potential between R and R “will sufficiently distort the
Gaussian characteristics of the probability distribution.

At this point, a simple algorithm could be used to iterate
Equation 12. An ensemble of 8 functions could be
propagated individually with the Green’s function. Each
iteration of Equation 12 would result in a new ensemble.
If Ep were picked to be approximately equal to E,, the
ensemble would fluctuate about an equilibrium number as
¢ became sufficiently large. If Ey were greater than E,, the
weighting term would cause the ensemble to explode. If
the value of Er were below E,, the numbers would fall to
zero. The objective would be to locate the Er value which
resulted in a convergence. The variational ground state
value would be the logical initial choice.

The GFMC implemented in this research, however, used a
technique referred to as importance sampling. 5 In this
technique, the variational trial wave function is used to
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n E,(cm-1) n E,(cm-1) d
2 -3032.642+0.008 15 -3112.3+0.1 o
3 -3040.096+0.009 16 -3115.940.1 )
4 -3047.57£0.04 17 -3119.5+0.1 o3 I
5 -3054.95+£0.05 18 -3122.240.1 .
6  -3061.98+0.06 19 31251401 | & o2
7 -3068.86+0.06 20 -3127.120.2
8 -3075.47+£0.07 21 -3129.0+0.1 0.1
9 -3081.86+0.06 22 -3130.5£0.2
10  -3087.91+£0.09 23 -3131.9+0.2 0
11 -3093.23+0.08 24 -3132.6+0.2 |
12 -3098.6+0.1 25 -3133.1+0.2 01 L . L
13 -3103.5+0.1 26 --3134.5+0.3 3% 55 8.5 i
14 -3108.1+0.1 27 -3134.0+04 r(A)
28 -3134.0+0.3 Figure 2
Table 1 Histogram of the probability distributions in r for clusters
Ground state energies of He Cl, calculated using the with 8, 18 and 28 helium atoms.
variational Monte Carlo method.

essentially guide the propagation to reduce both the
convergence time and the variance of the result. E, was
evaluated using the identity:

- [ ety 1w ar

T [w®vr

This integral was numerically computed in a fashion
similar to the variational method. Since the Hamiltonian is
a Hermetian operator, y7{R) and y(R) can be commuted
with H and the integral takes the form:

(16)

v(R) y(R)
[ we@ e ar

As in the M(RT)2 procedure, the right term was treated as
a probability distribution and the left was averaged over
the number of samplings M.

dR .

. Vr(R)

RESULTS
Values of the variational Monte Carlo ground state

n E,(cm-1)

8 -3086.7+0.1

18 -3149.5+0.3

28 -3171£7%
Table 2

Ground state energies of He Cl, calculated using the
Green's function Monte Carlo method.

t More computer time would have resulted in a stronger
convergence and subsequent lower error.

energies for n between 2 and 28 are shown in Table 1.

Due to the considerable cpu time required for convergence
of the GFMC algorithm, values for the ground state
energies computed by the GFMC are provided for n = 8,
18 and 28 in Table 2. Per particle differences in the
variational and GFMC values are consistent at roughly
1.5cm-1. That the variational values converged at n greater
than 25 probability suggests that for this number of
particles, the Jastrow factors should be altered. It is likely
that the He-He interactions are providing a significant
amount of binding energy to the cluster. In this situation,
fuene(r) would have to decay as well.

Probability distributions for the ground state variational
calculations posses a striking consistency for clusters
containing 2 to 28 helium atoms. Figure 2 shows histo-
grams of radial distributions for the cases of n=8,18 and
28. The distributions for all values of n have a broad base

¥ B e, e e s e o S B Qe B B |
0.6 |-
05

04 |

P(e)

0.3
0.2

01 |

8 (degrees)
Figure 3
Histograms of probability distributions in 8 for clusters
with 8, 18 and 28 helium atoms.

—————————————————————————————————————————————————————————————————————————————————————
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Figure 4

Histogram of the probability distribution of 0 divided by
sin(8). Since the number of helium atoms which can be
placed at angle @ is proportional to sin(6), this generally
horizontal graph suggests a uniform distrbuition of angles
between 0 °and 180",

with a maximum between 4A and 4.5A. Throughout this
range of n, minimum values of r are fixed near 2.5A. The
maximum value for r gradually increases with the number
of helium atoms. Probabilities diminish at about 5.5A for
n=2 and fade at roughly 10A for n = 28. The right-hand
shoulder develops slowly with an apparent emergence at
n=17orn=18.

Histograms of angular distributions are similar as well.
Figure 3 shows the profiles in 0 for the cases where n = 8,
18 and 28. With n values between 15 and 28, symmetry in
the histograms suggest uniformity in the angular distribu-
tions of the helium atoms about the chlorine molecule.

Figure 5
Models of the ground state of the He,,Cl, cluster showing
configurations with helium atoms place at a relatively
large distance from the Cl, center of mass, and a model
showing a relatively compact cluster.

Figure 4 is a plot of P(0) divided by sin(8) for HepsCly. It
shows a general uniformity of the probability for angles
from 0° to 180°. This suggests that the distributions are
generally spherical. Examples of the resulting ground
state clusters are shown in Figure 5. It appears to take the
form of a liquid which engulfs the chlorine molecule. The
variation in the two ground state clusters shows that there
isa considerable fluctuation in the r coordinate producing
a broad range of fluctuations in atomic configuration.
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Bloomington, IL 61702
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ABSTRACT

Electrorheological fluids consist of a colloidal suspension of dielectric particles in a continuous fluid of
smaller dielectric constant. Recent molecular dynamics simulations of these fluids in an applied
electric field have been shown to produce percolated, columnar structures.! No systematic attempt has
been made so far to simultaneously include the effects of temperature and viscous drag due to the
continuous fluid. We propose a dipolar lattice gas model to study the resulting structures and dynam-
ics. We incorporate the effect of viscosity of the continuous medium by a dynamic ansatz that deter-
mines the range over which individual particles can jump in a single simulation event. The tempera-
ture is simulated by assigning a probability of jumping to higher energy states in accordance with the
Boltzman distribution. We study the equilibrium phases of the system as a function of temperature.
Our results from finite temperature simulations suggest that there is a gradual phase transformation
from a liquid like phase at low electric field or equivalently at high temperature to a solid like phase at

high electric or at low temperature.

1. Jaggi, N.K. Jour. Stat. Phys., 64, (1991), p. 1093.

INTRODUCTION
Electrorheological (ER) fluids are a class of novel
materials that have received considerable attention
recently. 1-6, They consist of small, highly polarizable,
solid particles, suspended in low dielectric constant fluids.
One interesting characteristic of these fluids is that when
an electric field is applied across them, the viscosity
increases almost immediately by a very large amount.
They behave more like a weak solid than a liquid. When
the electric field is removed, they revert almost instantly
back to the liquid state. Because of the ease and small
expense of generating electric fields and the short response
time to the applied fields (on the order of a millisecond),

The author graduated from Illinois Wesleyan
University in 1993 with a Bachelors in physics.
He is now pursuing a Ph.D. degree at the
University of Chicago and is working in the Frank
Center for Image Analysis. His current research
interests are in the area of medical physics and in
image processing. He is a recipient of a Grani-in-
Aid for research from Sigma-Xi. He is a member
of the Society of Physics Students and an associate
member of Sigma-Xi.

these fluids have many potential applications, such as the
next generation of low cost active automotive suspensions,
brake and transmission systems.

Since the particles suspended in the continuous medium
are relatively large (1-5um), the structure of the ER fluid
can be studied directly by optical microscopy. Figure 1
shows a recent result 1 for such a photograph. The
particles seem to cluster and form chain like structures

Micrograph of the structure of an ER fluid from Whittle'.
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L &

Figure 2
Schematic diagram of the lattice grid showing three
occupied sites used in our model.

along the direction of the electric field. These chain -like
structures are not simple straight lines, but are intertwined
and twisted. The width of the columns changes signifi-
cantly as one moves along the field direction. As a result
of this columnar structure, the viscosity of the fluids
increases as the chains become longer and thicker.

During the past 5 years, a consensus seems to have
emerged that there are basically three types of phenomena
that dominate the physics during the transformation 2: The
induced dipole interactions among these small particles;
the viscous drag forces on the particles as they move
through the continuous medium; and the thermal fluctua-
tion of the system at finite temperatures. The forces
involved are quite complex, they are long range and
anisotropic. It is a many-body problem. It has not been
possible to solve the problem analytically. Most of the
progress in understanding these complex fluids has been
made by computer simulations 3.4.5. The results are in
agreement with the structures obtained experimentally, but
there are still some interesting questions which have not
been explored.

DIPOLAR LATTICE GAS APPROACH
Previous computer simulations use continuous models in
which the particles can move freely in the continuum
according to Newtonian mechanics. In our model, we
restrict the positions of the particles on a lattice grid. The
particles can only occupy the intersections of the lattice.
No two particles can occupy the same position. We use an
energy based adaptive Monte Carlo algorithm to simulate
the dynamics. This is described in greater detail in the
following sections. In this paper, we focus on the two
dimensional square lattice.

There are fluctuations in local density, but the overall
density of the system is held constant through out the
transformation. Since there is a repulsive component in

the dipole interaction, we introduce the following bound-
ary conditions to keep the overall density constant. When
ever a particles moves out of the left boundary, it is
introduced back to the corresponding position on the right
side, as if the lattice grid were circular in the horizontal
direction. The same prescription is applied to particles
moving out of the right boundary. Since the top and
bottom boundaries represent the two metallic electrodes,
the particles are not allowed to jump out of the top and
bottom boundaries. Mirror image boundary conditions are
applied as required by the theories of electromagnetism.

STRUCTURE AND DYNAMICS AT ZERO
TEMPERATURE
The system begins with a certain density of randomly
placed particles on the lattice. As the electric field is
applied across the lattice, the particles become induced
dipoles in the direction of the external electric field. The
electrostatic force F; on the itk dipole is:

F=-V, U(rj)
= 3p2);‘. ﬁ[wcoﬁeﬁ) —1)&,+ {sin (26)6,)| (1)

where p is the induced dipole moment in the direction of
the applied electric field, r;; is the distance between
particles i and j, ;; is the angle between the vector r;j and
the direction of the electric field. The energy of the system
U(r;) is given by:
1 |
vry=-p G 1) @
L

with the sum running over all dipoles and their sequence

of images in the two metallic electrodes. At zero tempera-
ture, because of the viscous drag force, the system will

L]

RN

Figure 3
Schematic diagram of the Outward Spiral Search
Algorithm.
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evolve in the direction of decreasing energy.

Each particle has a “neighborhood”, the square area, with
the particle at its center within which the particle can
attempt to jump in a single move. A random target empty
lattice site is selected within the “neighborhood” . If this
tentative move can lower the total energy, we accept it and
repeat the procedure on another randomly selected
particle. If this does not lower the total energy, we go on
and try another empty site in the “neighborhood” until all
the empty sites within the “neighborhood” have been
exhausted. This whole procedure it iterated again for
another “neighborhood” until we stop it.

Our first attempt at choosing an empty site within the
“neighborhood” was to check all possible sites within the
specified “neighborhood” and find the one that can lower
the total energy the most and then move the particle to that
site. This method does give us the steepest decrease in
energy, but it needs to check every possible site in the
“neighborhood” . It is computationally too expensive as
we go to larger lattices.

Another way of deciding where to jump is to move as soon
as we find a site than can lower the energy. We want to
make sure that the final stricture of the system is the result
of the underlying physics, not due to the algorithm we use
to find the target site. If we search for the target site in the
“neighborhood” starting from the north-west comer
moving sequentially down to the south-east corner, there is
a tendency for particles to cluster in the north-west corner.
To eliminate this, we adopted a dynamic ansatz which we
call Quiward Spiral Search Algorithm which is shown in
Figure 3. We shall first check the near “neighborhood” of
the particle. If the sites in the near “neighborhood” cannot
lower the energy, then we search for outer neighborhood
sites. Since the dipole interaction decreases as 1/r3, the
farther away the particles, the less their influence. We
introduced a “range” parameter as the cut off during the
summation. It is also specified as a square area. Ifa
particle sits outside the “range-square”, centered at the
current particle, their mutual interaction is ignored.

The formal criterion for moving a particle to a new site is
related to the total energy given by Equation 2. In
practice, however, we only need to compute a partial
energy U;, which is a single sum of interaction energies of
the particle that we are attempting to move with the other
particles in the system.

3cos(0;) ~ 1
g Beef@)-1)

") r

3

Since we move one particle at a time, the relative positions
of the other particles are unchanged. The energy associ-
ated with those particles does not change either. To
determine whether the new move can lower the total
energy, we only need to know if the move can lower the
partial energy associated with the particle itself. This

method results in significant computational savings.

We hope that the viscosity of the continuous medium is
simulated by the size of the “neighborhood” . Larger
“neighborhood” sizes will correspond to less viscous
liquid media.

STATES AT FINITE TEMPERATURE
We incorporate the temperature effects on the equilibrium
states of the system using a Boltzman distribution:

PAU)=e % . @)
where AU is the energy difference before and after the
tentative move, k is the Boltzman constant and T is the
absolute temperature. For a fixed positive AU, the higher
the temperature, the larger the probability that it can jump
to the higher energy states. We guarantee this distribution
in the simulation with the following procedure. At each
tentative move, AU is calculated. If AU<O, the tentative
move is accepted. If AU > 0, the probability P(AU) is
calculated. A random number is drawn. If the number is
smaller than the calculated probability, the tentative move
is accepted. Otherwise, the tentative move is rejected.
After many trials, the frequency of accepting moves to
higher energy states is in accordance with the Boltzman
distribution.

RESULTS
Zero Temperature
At zero temperature, the total energy of the system
decreases monotonically with time as shown in Figure 4,
for a 100 x 100 lattice. The structure of the system at
times 0, 2 and 11 are shown in Figure 5. The system
begins with a random configuration. After the electric
field is applied across it, the particles cluster to form short
chains. At time 2, the chain-like structures are becoming
longer in the direction of the electric field. As the system
evolves, the columnar structure becomes longer and
thicker. At time 11, the columnar structures completely
span the two electrodes and are all intertwined together.
Our approach generates results that are in reasonable
agreement with previous experimental and computational

(0 1 1 3 ] 10 12

Figure 4
Total energy vs. time for a 100x100 lattice at T = 0
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Figure 5
Three structures at times t = 0.2.11, showing the formation
of the intertwined columns.
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works. This gives us the confidence to go beyond the
structure and dynamics at T = 0 and study the thermody-
namic properties of the ER fluids at finite temperatures,
which has not been explored earlier.

Githbabeuid
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-

4 ] & 1 1 9 10
Temperature (10 Units)

Figure 6
Average energy of the system vs temperature.

Temperature Effects on the Equilibrium States

At finite temperature, the particles have a certain probabil-
ity to jump to a higher energy state. Since the system is
continuously changing, there is no single final structure for
it. After a sufficiently long time, the system will reach its
thermodynamic equilibrium state. At equilibrium, the
structure and energy will fluctuate around an average
structure and energy. At a fixed temperature, the average
total energy of the system is constant over a long period of
time. Figure 6 is a plot of the average total energy vs.
temperature. There is a gradual transition from low
average energy at low temperature to high average energy
at high temperature. Figure 7 shows some typical struc-
tures for the system at these different temperatures (7= 2,
4,6, 8, 10). At low temperature, the equilibrium state of
the system is well ordered, which is like a solid. At high
temperature, the columnar structures are broken up,
producing a disordered system, one more like a liquid.
There is a gradual transition from well ordered to disor-
dered as the temperature increases, which correlates with
the gradual transition of the average energy. We see 110
sharp transition such as occurs in a true phase transition.
This is in agreement with almost all of the experimental
results3.6.

Since the temperature effects are simulated by assigning
probabilities of jumping to higher energy states according

T=8 T=4

T=6

Figure 7
Typical structures of the equilibrium states at different
temperatures showing how the system disorders at higher
temperatures.
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to the Boltzman distribution, the structure is determined by
the ratio of energy difference to temperature. This means
that high electric field strength is equivalent to low
temperature and vice versa.
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ABSTRACT
We present a derivation of a nonlinear differential equation for the motion of a stretched string that is
fixed at both ends. The nonlinear terms are parameterized in terms of a “degree of smallness”, A. A
perturbation expansion to order A2 and a Green'’s function allow us to solve this equation to second
order. We show a plot of the solution in space and time.

INTRODUCTION
For a stretched string with linear density pL and tension T,
as shown in Figure 1, Newton’s second law for the
direction transverse to the string becomes:12

T (sin [92] —sin (91)) = (].1 Ax) g_’: ;

where Ax is a segment of length. If one assumes that the
angle is sufficiently small so that:

(6]

sin (0) = tan () = g% )
and takes the limit as Ax approaches 0, the well-known
linear wave equation:
9 9
O = Lz ey 3)
o2~ |V*] o

appears, where the wave speed V is given by:

V=\/E.
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)

If, however, we have a case where Equation 2 is not a
good approximation, Equation 1 becomes:3

¥

1]
ol 3 B (%)
(1+y7)? %
where:
, Oy d'y
y' = Pr ¥= 37 (6)
In going from Equation 1 to Equation 5, we have used:
an(6) =3 . )
PERTURBATIVE SOLUTION

‘We now solve the differential equation (Equation 5). If the
term responsible for the non-linearity, y’2, is not small
enough to neglect, but is small enough that a perturbative
solution will converge rapidly, a perturbative expansion is

01

X

Figure 1
Sketch of a section of a string under tension showing the
tension and the angles.
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a useful model for this system. We assume that the string
meets these criteria, and that the solution is a series of the
form:

y =A% + Ay, + A2y o+ .. (8)
The dimensionless parameter A is introduced to keep track
of the “degree of smallness”. Note that the nth order
solution has An attached to it. When Equation 8 is used to
solve Equation 5, all the terms with the nth power of A will
correspond to y,. We keep track of the “degree of small-
ness”4 of the nonlinear term in Equation 5 with the same
parameter A by writing:

Yy’ 5
—— = ®
s P

We now solve equation 9 by performing a binomial
expansion of the radical and substituting the derivatives of
Equation 8 into Equation 9, which becomes:

Do+ Ay + N3] [1-3A% 0 + Ay +A%)
= 3N, 06+ M+ N5) = 3R O+ Ayi + A7)
+ lsi A+ )] = ?/1-5 [jﬁo +A P+ A7 yz)

Collecting terms with like powers of A, we have to O(A0):

(10)

)’;_#.ﬂ}:(}v an
to O(A1):
yi’—#j’i =3% % . (12)
1
to O(A2)
V- = — R 3N 4. (1Y)

Equation 11 is just the linear case, so to Oth order, we
recover the linear approximation. Equations 11-13 all
have the form:

0% =F, (14)
where F, is a function of y,, for m<n, and
o 9
- L )
F =3 VP 43

is the d’ Alembertian cperator.

Equation 8 indicates that the total solution to the nonlinear
wave equation is the linear solution plus some correction
terms. These correction terms can be found since their
solution depends only upon lower order terms. We use the
well known solution for the linear case, chosen to satisfy
the boundary conditions that the end points at x = 0 and

x = L are nodes:

Yo=Asin (kox) e @t
where k, = na/L and V,, = @w,/k,. The most general
unperturbed linear solution is a Fourier series of such

solutions, but we shall assume a monochromatic unper-
turbed solution.

(16)

We now turn our focus to solving for the first correction
term y;. Assuming that y; can be factored into space
dependent and time dependent functions in the same way
as was done in Equation 16,

n(xh) =hy(x) e’ a7
Equation 11 becomes:
e [hy + Kihy) =
- e 3[A° K cos? (ko) sin (kpx)),  (18)
where
=g (19)
Equation 18 can be simplified to:
e [hy + Kh,) =
— e [A® kg (sin (kox) + sin (3kox))]  (20)
For Equation 20 to be true for all time:
@, = 3w, 21

Since the right hand side of equation 18 is not zero, k; #
3k,. The relationship between k; and k, will be deter-
mined later. Substituting Equation 21 into Equation 20
allows the time dependence to be factored out, resulting in
an equation for h;(x):

[hy + Kih,] = §1A° K, (sin (kox) + sin (3kx))].  (22)

Finding h;(x) using a Green’s Function
Equation 20 can be solved by variation of parameters or by
a Green’s function. The latter is a technique for solving
inhomogeneous differential equations. If

Dy(x) = F(x) (23)
where D is a differential operator and if
D G(x-x) =§x-x) (24

where 8(x - x") is the Dirac delta function and G(x - x") is
the Green’s function, the solution to Equation 23 is:

V@) = j Gx-X) F() d¥’ (25)

where the integration is over all space. If we know how
the system responds to an impulsive or point source, the
solution, y(x) is a summation of responses to impulsive
sources weighted by the density function F(x?).

Putting Equation 20 into the form of Equation 23:

34% +|h, = %A’ kg {sin (kox) + sin [31:@:]} ,  (26)

For this differential operator and the boundary conditions
that x = 0 and x = L are nodes, the Green’s function is:5

_ sin (k,x) sin (k,[x—L])
Gx-x)= lk: == (k,}.) 0<x<x
sin (k,x) sin (k,[x" -L])
k, sin (k,L)

Using Equation 25 to solve Equation 22, we have:

x<x' <L (27)
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3Aky [ . o ‘n? A®
= F sy 00 b - LD 13+ sinln) JG9)| 28 i (38)
where where we neglect the terms inside the brackets in Equation

16)= [sin (e){sin (ko) #sin (ko)) ¢ 29)

and

J(x) = J' " sin (b, —L]){sin (kox) + sin (3&,:')} dx  (30)

Evaluating the integrals with the help of some trigonomet-
ric identities gives h;(x) as:

h,(x)=B {sin (ky[x-L]) M(x) + sin (k,x) N(x)} , (31
where
B= 3A° ky

" 16 kysin (k,L) ’ ©2)

and

_ sin[(k, + ko)x]  sin[(k, — ko)x]

M) == =~k —k,
_sin[(k, + 3ko)x] sin[(k, — 3ky)x]
+ E

L+ 3k, X

(33)

and

N(x) = SRLEL ~ky + kgx] _ sinl kyL —(ky ~ ko))
B ky + kg k,—kq
sinfk,L ~(k, ~ 3ko)x]  sinl kL ~(ky +3kgx] 3
- k, + 3k, ' k, + 3k,

INTERPRETATION OF RESULTS
We can specify a value for k; by applying the boundary
conditions to Equation 22. Since both h; and the right
hand side of Equation 22 equals 0 at both x=0 and x = L,
h;” must also equal 0 at these points. Taking the second
derivative of Equation 31 and setting it equal to 0 results
in:

cos (k,L) =0 . 35

Therefore,
2m—1
ky= I » (36)
where m is an integer greater than 1. In general, m will
range from 1 to e, but in many cases, it is only necessary
to consider values from 1 to 3 because contributions with
larger m are very small. The greater the amplitude, the
more terms one is obliged to include.

The ratio of the amplitudes for the first perturbed term and
the linear term is:

N o_ hy(x)
J’; ~Asin(kox) 37

Using Equation 31 for h;, recalling that kgp=nmn/L and using
Equation 36 gives the approximate ratio:

31 that contain k. This causes the ratio to appear to have
dimensions of length-1.

We now can find a value for V; = @;/k;, the speed of the
first-order correction to the wave function, We determined
@y and k; completely independently from V;. This implies
that the velocity is dependent upon m. Hence, V; may
“adjust” so that all k;‘s will be present. This suggests
dispersion, and the need for a Fourier series for the first-
order perturbation. Fortunately, as can be seen from
Equation 37, this series converges in a few terms.

To help the reader visualize these results, we plotted the
first two terms of the total wave function:

Y=Y+ N (39)

or

¥ = cos (m,f) sin (kox) + cos (@) h,(x) (40)
with the value of n = 1 (see Equation 16) and making a
superposition with values of m ranging from 1 to 3. Figure
2 shows these results.

We have used a familiar physics problem, waves on a
stretched string, as an example of a nonlinear system. We
constructed a solution to this problem using perturbation
techniques. This example offers a useful tool, in a familiar
system, for introducing the reader to the challenges that
one must face in an analytical approach to nonlinear
physics.
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Figure 2
This is a plot of Equation 40. It shows how the wave
develops in time as well as in space. The x axis is the
horizontal axis and the time axis comes out of the page.
The plot shows one complete cycle with an arbitrary
length of 10 and an amplitude of 3.
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ABSTRACT
We have developed a simple, inexpensive and precise technique for measuring the shear elastic
modulus of weak solids using electromagnetic and optical tools. This technique can be adapted to
measure the viscosity of a liquid as well. A Helmholtz pair was used to produce a torque on a perma-
nent magnet mounted on the smaller of two concentric cylinders, coupled by the material to be studied.
The torque was controlled precisely and measured accurately in terms of the current flowing through
the coils of the Helmholtz pair. An optical lever was employed to measure the angular displacement of

the inner cylinder as a function of the applied shear stress. The instrument was validated by making
measurements on lemon jello and agarose gels of varying concentrations. The instrument has also
been used to study the electric field induced “freezing” of electrorheological fluids, a subject of

contemporary interest.

INTRODUCTION
Traditionally, the shear elastic properties of solids have
been measured using mechanical instrumentation. The
material under study is typically grabbed and then twisted
or stretched. The angular displacement, or change in
length, is then measured by either mechanical or electronic
methods. Results of the measurements are frequently
presented as stress-strain (t—y) graphs, such as shown in
Figure 1, where T denotes the shear stress and y represents
the shear strain. A solid typically behaves linearly over a
finite region of stress and eventually moves into a nonlin-
ear region. This nonlinear behavior terminates when the
material fails. The slope of the linear region of the (t—y)
graph is the elastic modulus of the material understudy. In

The author is currently a Ph.D. candidate in the
Chemical Engineering and Materials Science
Department at the University of Minnesota-Twin
Cities. His current research involves the study of
stress development during the processing of thin
organic films. Outside of graduate school, Jason
enjoys biking, hiking (anything outdoors),
weightlifting/fitness and playing the cello.

this study, we are interested in the static shear modulus, G,
defined as:

G = lim At (1)

where ¥ is the time rate of change of the strain, called the
strain rate.

Gels, foams and electrorheological fluids are typical
examples of a class of materials that have been grouped
under the label “complex fluids”. The importance of these
materials in such areas as automotive engineering, robotics
and chemical engineering warrant close investigation of
their properties under different conditions. They are also

non-linear plastic TS

linear elastic

B
Figure 1
Representative stress-strain curve.
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Figure 2
Two methods of exerting a shear on a solid.

of fundamental interest to materials scientists, because
their properties place them at an intermediate stage
between solids and liquids. Commercially available
instruments are designed to study engineering materials,
such as steel, and are not useful for investigating weak
solids. A new technique is needed to study the shear
properties of weak solids.

THE INSTRUMENT
A solid can be sheared by either twisting it or by moving
two parallel faces in opposite directions as shown in
Figure 2. We decided to use the twisting method to a
apply the shear, using a concentric cylinder configuration.
The shearing cell consists of a stationary outer cylinder
and an inner cylinder attached to a precision ball bearing
coupled by the material under study. A schematic diagram
of the instrument is shown in Figure 3. To create the stress
on the solid, a magnet was mounted on the inner cylinder
and the shearing cell placed in the center of the coils of a
Helmbholtz pair. The interaction between the field of the
Helmholtz pair and the magnet twisted the inner cylinder.

The magnetic field at the center of a Helmholtz pair is:

Progrmmable High Volage
{leﬂ Power Supply ] l Power Sungl
+ » -
He-Ne Laser
Mty
Stick
Magnet
i Helmholr. Pair

c  Colinder Configuration & Bearing Mount
Mimor Magnct
e 4
Bearing High Voltage
Connections
L)
Maienal
2 Studied
Figure 3

Schematic diagram of the instrument showing the shear
cell, the Helmholtz pairs and the optical lever.

_MNI

*(3f

where By is the magnetic field (in Gauss), [ is the
permeability of free space, / is the current passing through
the coils (Amps), R is the radius of the coils (in meters)
and N is the number of turns in one coil. For a Helmholtz
pair, the two coils are separated by a distance equal to the
coil diameter. The gradient of By is 0 in the region at the
center of the coil pair. This means that the magnetic field
of a Helmholtz pair is spatially uniform. Consequently, a
small magnet placed in the field of the Helmholtz pair will
experience a pure torque without being affected by any
lateral forces. A computer controlled power supply was
used for precise control and accurate measurement of the
current flowing through the coils. This controlled the
torque on the magnet and hence the shear exerted on the
solid. The large current range of the supply allowed for a
broad range of applied torques.

2

H

We decided to use an optical lever to measure the angular
displacement of the solid. Although less precise than
interferometric techniques, the optical lever allowed us to
track large displacements. It also kept the instrument
relatively simple and inexpensive.

RESULTS
We tested the instrument with a weak solid that was close
to the liquid/solid phase boundary. We chose lemon Jello
which had the properties for which we were looking. A
typical data set for lemon jello is shown in Figure 4. A
well defined solid-like response was indicated. The Jello
supported a finite shear stress with out flowing . The
stress-strain relationship is quite linear and a well defined
shear modulus, G, can be extracted from the slope. Itis
possible that measurements over a broader range of strains
will reveal more complex behavior. The uncertainty along
the strain axis is due to the unfocused laser beam that was
used in the optical lever.

A second test was done using agarose gel. This material is
used in biology as a growth medium for bacteria. Itis

015 ¢

0.13 -

01

0.075 |

0.025 |

Current (proportional 10 shear stress)
o
&

1] 0.0‘05 0,‘0\ 0.0‘15 0.‘02 ﬂ.l;z! 0‘03 Q.Olﬂs [+] :34
Shear Strain (radians)
Figure 4
Results for lemon jello. The straight line indicates that
there is a well defined shear modulus for this weak solid.
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particularly easy to use because it is a gel at room tempera-
ture and only needs to be warmed slightly to make it a
liquid again. This makes it easy to pour the material into
the annular space where it is allowed to gel in place.
Another feature of agarose gel is that the elastic constant
of the material varies with the concentration of agarose.
Typical results of these measurements are shown in Figure
5.

As the concentration of agarose increases, the slope of the
(t—y) graph increases. This implies that the shear modulus
of agarose gel increases rapidly in this range of concentra-
tions. This qualitatively agrees with the expectation that
the cross-linking density increases at the microscopic level
with an increase in concentration. A detailed study of the
concentration dependence of the shear modulus of agarose
gel is currently in progress.

After validation with the studies discussed above, we
applied the technique to a class of materials known as
electrorheological fluids (ER).

These fluids are colloidal suspensions of particles of high
dielectric constant, neutrally buoyant in an oil of a smaller
dielectric constant. Their response to an electric field is
frequently described as a very large increase in their
viscosity. Recently, however, various groups have begun
to describe them more in the language of solids. For
example, there have been attempts to measure the yield
stresses and shear moduli of these materials in the pres-
ence of an electric field. Frequently the results are not
reproducible. The contemporary research community
often debates if there is any yield stress at all. In deed,
there are claims that these materials behave essentially like
a liquid and have no yield stress, down to the smallest
strain rates that have been measured.

We believe that these claims represent more of an inability
to apply very small stresses and very small strain rates. As
shown in Figure 6, the suspension of corn starch in mineral
oil, in an electric field of 6 kV/cm, shown unambiguously

12 T —©—1.40% Agurose
—a— 0.70% Agarose

Voltage (proportional 1o shear stress)

] 0.0004 0.0008 0.0012 ©.0016 0.002

Shear Strain (radians)
Figure 5
Results for agarose at various concentrations. The rapid
increase in the shear modulus (slope of the line) in this
range of concentrations shows an increase in the cross-
linking density with an increase in concentration.,

" "

i .
3 os - @
1'; 0os @
| N

o 0.018 0.032 0.048

Shecar Sirain (arbitrary uniis)
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Figure 6
Response of corn starch, suspended in mineral oil, in an
electric field of 6 kVicm. This suspension is an
electrorheological “fluid”.

a linear, solid-like shear elastic response from which a
shear modulus can be extracted. The discontinuity at and
above a current of 0.5A corresponds to what one might
call a yield stress. It would not have been possible to
delineate this well defined solid-like behavior, including
the linear regime and recoverable strain, if one could not
make measurements for very small stresses and strains. In
the coming months, we intend to explore the mechanical
response of various ER fluids extensively using this
instrument at various applied electric fields, various
concentrations of suspensions.

SUMMARY
We have designed and built a simple and inexpensive
instrument that can apply small stresses and measure small
strains needed to study the shear elastic response of weak
solids. Through the use of electromagnetic and optical
tools, we have achieved sufficient precision to investigate
contemporary research problems, such as
electrorheological “fluids”.

Plans to improve the sensitivity and accuracy of our
instrument are currently being sketched out. The unfo-
cused laser beam will be collimated in the near future.
This will enable us to obtain more precise measurements
of the angular displacement of the inner cylinder. Other
improvements will include the use of better precision
bearings, or perhaps the use of magnetically levitated
bearings.

The instrument will be modified to incorporate two
Helmholtz pairs at right angles to each other that are
driven by sinusoidal currents that are 90 degrees out of
phase with each other. This will produce a rotating
magnetic field at the inner cylinder and maintain a
constant shear strain on the liquid.

ACKNOWLEDGMENTS
This work was supported by a NASA/JOVE grant to the



46 THE JOURNAL OF UNDERGRADUATE RESEARCH IN PHYSICS VOL 12, #2

Illinois Wesleyan University Department of Physics.

REFERENCES
* Current Address of the author: University of Minnesota,
151 Amundson Hall, 421 Washington Ave., S.E.,
Minneapolis, MN 55455.
1. Gast, A.P. and C.F. Zukoski, Advances in Colloid and
Interface Science, 80, 1989, p. 153,
2. Sprecher, AFE,Y. Chen and H. Con.rad, Er_ggmdmm[

Technomic Pubhshmg, 1990, p. 82.
3. Payne, J.A. and N.K. Jaggi, Bulletin of the American
Physical Society, 38, 1, 1993, p. 396.

FACULTY SPONSOR
Dr. Narendra K. Jaggi
Laboratory for Materials Physics
Illinois Wesleyan University
Bloomington, IL 61702-2902



VOL 12, #2

THE JOURNAL OF UNDERGRADUATE RESEARCH IN PHYSICS 47

SCANNING TUNNELING MICROSCOPY OF CYTOSINE
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ABSTRACT
An electrochemical scanning tunneling microscope was used to image cytosine molecules adsorbed onto an
Au(111) surface in solution. A three-electrode setup allowed the electrochemical potential to be monitored
and controlled during scanning. The rest potential was positive, allowing for spontaneous adsorption.
Variation of the electrochemical potential caused a change in the two-dimensional lattice structure of the

adsorbed cytosine molecules.

INTRODUCTION
The scanning tunneling microscope (STM), developed by
G. Binnig and H. Rohrer in the early in the 1980’s, was
initially used to image conducting surfaces in a vacuum.!
In this application, the operation of the STM can be
explained using the “particle-in-a-box” model. The STM
tip and the conducting surface are separated by a distance
d, such that a barrier of potential energy V and width d
exists. There exists a probability that an electron can
tunnel through this classically forbidden region because
the wavefunctions of the Fermi level electrons decay
exponentially through the barrier with a characteristic
inverse decay length, k:

m

e )
where m is the mass of the electron, ¢ = V - E is the
workfunction of the material, V is the barrier height and E
is the total energy of the electron.2 If the separation d is so

K=
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small that the tip and the sample wavefunctions overlap, a
transition of an electron from the tip to the sample or from
the sample to the tip is possible, thus establishing a flow of
electrons. This flow of electrons, /, is the tunneling
current, a measure of the wavefunction overlap or the tip-
sample separation, and is given by:

I~ e 2
The STM tip scans the surface using piezoelectric drivers
and a feedback system to keep the tunneling current
constant. By recording the vertical motion of the tip
relative to the sample, the surface topography is mapped.

Tunneling through other insulators, such as air and water,
is also possible. In addition, tunneling can take place in an
electrolytic solution. Although an electrolyte is an ionic
conductor, it is an insulator with respect to electron flow.3
In this application, ionic conduction can be minimized by
insulating the scanning tip with wax. The use of a STM to
image in water and solution is an important development
in microscopy for biological samples, as biological
molecules function only in a water environment. Tunnel-
ing is limited to metals and semiconductors. However,
nonconducting molecules can be imaged if they are
adsorbed onto a conductor. This adsorption is accom-
plished from an aqueous solution by controlling the
electrochemical potential.

Electrochemical STM has been used to obtain images of
DNA molecules4 as well as molecules of the individual
DNA bases (adenine, thymine, guanine and cytosine).’
The cytosine molecules adsorb onto a gold surface in an
ordered oblique lattice.5 The lattice dimensions are a =
(10.5+0.2)A and b = (9.5+0.2)A with y= (10243)°. Each
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unit cell contained a central cytosine molecule, which
appeared as a bright spot, and a large black hole. The
bright spot indicates that the topography is high, while low
topography appears dark. Each cell shared its vertices
with 4 other bright spots. The lattice was at an angle of
(30+3)° with respect to the gold lattice.

Once DNA molecules can be routinely imaged at resolu-
tions which reveal the individual bases in the molecules,
sequencing the bases using STM might become possible.
We are investigating the change in the two-dimensional
lattice structure of the adsorbed cytosine molecules with
change in electrochemical potential because this is
believed to be a unique property for each of the bases.

EXPERIMENTAL METHOD
The microscope
The STM used was designed to hold the sample stage, a
circular plate, beneath the scanning tip.6 The plate was in
contact with three magnetic legs, one of which was
controlled by a driver, providing vertical motion of the tip
relative to the plate. A glass cylinder was fitted over the
plate so that the sample chamber was hermetically sealed.
The chamber was then sparged with clean, humidified N
gas. Drift was limited to approximately 1 A/minute.
Tunneling currents on the order of picoAmps in solution
were possible. The tips were made from Pty glrg2 by an
etching process,” and were coated with wax. They gave
essentially no leakage current.

Gold substrate

The cytosine molecules were electrochemically adsorbed
onto a gold substrate. The substrates were prepared under
ultrahigh vacuum conditions by growing gold epitaxially
on a heated mica surface.8 Care was taken to ensure that
the gold was both flat and clean, so that adsorbed mol-
ecules could be imaged. The substrates were stored in an
argon atmosphere until used. They were exposed to
laboratory air only for a few minutes, before being stored

Pt connter electrode

Gold substrate,
working electrode

Pt contact to Au substrate
Figure 1
A top view of the circular sample stage with mounted
teflon cell and working, reference and counter electrodes.

Figure 2
Cytosine molecules imaged at +50 mV after forced
adsorption onto Au(111) surface. A: Lying-down
structure, appearing as bright spots in rows. B: Stacked
structure, worm-like rows.

and while being mounted on the STM sample stage. Very
clean substrates showed Au(111) surface as a double-stripe
pattern, where adjacent stripes were separated by about

70 A (commonly seen in ultrahigh vacuum).9

Electrochemistry

A teflon cell, shown in Figure 1, was mounted on the STM
plate with a gold substrate beneath a circular hole in the
cell. The STM tip extended into this hole, which had a
volume of 70 pl and contained the solution through which
the tunneling occurred. Three electrodes were used: the
working electrode, the reference electrode and the counter
electrode. The gold substrate was the working electrode,
electrical connection was made to the gold using a Pt wire.
The reference electrode was an Ag wire which extended
into the solution. This electrode was necessary because
absolute potentials cannot be measured. The counter
electrode, a Pt wire extending into the solution, kept the
potential difference between the gold substrate and the
reference electrode constant. The electrochemical poten-
tial that was of interest to our research was the potential
between the working electrode (gold substrate) and the Ag
reference electrode. The electrolyte used was a 100 mM
NaClOy solution made with 18 M purified water. 20 pl
of a 10 mM cytosine solution were added with 50 pl of the
electrolyte. The cell and electrodes were freshly prepared
for each run to prevent the gold substrate from becoming
contaminated.

Imaging and resolution
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Figure 3
Cytosine molecules spontaneously adsorbed and imaged at
the rest potential. Alternating rows of high and low
contrast, with high-contrast rows appearing as double
stripes.

When possible, the initial imaging for each run was carried
out before the cytosine molecules were adsorbed onto the
surface. The measured rest potentials for such runs were
on the order of -50 mV with respect to the gold. A slightly
positive rest potential, on the order of 30 mV, permitted
spontaneous adsorption of the cytosine molecules,
preventing imaging prior to adsorption. The tunneling
current used ranged from 0.10 nA to 0.30 nA. The tip bias
was set to 100 mV. The resolution varied from run to run
as well as during individual runs because the resolution
was dependent on the state of the STM tip, which continu-
ally changed. Very good resolution resulted from a
geometry where a single atom or a few atoms were at the
end of the tip.

RESULTS AND ANALYSIS
Figure 2 shows a typical scan. Two different structures
were seen, a stacked structure and a lying-down structure.
Both structures were often seen in the same image. We
could observe the domain boundaries.

The lying-down structure, shown at A in Figure 2, was a
planar structure which appeared as bright spots in rows,
with very little dark space between the rows. With slightly
less resolution, the individual molecules could not be seen,
but the rows were still visible. The row separation was
measured to be (6.310.3)A. The separation of the mol-
ecules within each row was (5.240.3)A. The molecules in
adjacent rows were shifted such that an angle of (110+3)°
was formed between a row and a line connecting nearest
neighbor molecules in adjacent rows.

The rows of the stacked structure, shown at B in Figure 2,
appeared worm-like and narrow, leaving more dark space
between the rows than seen for the lying-down structure.
The spacing of the rows was measured to be (4.9+0.3)A.
Intra-row spacing was difficult to measure quantitatively,
but the stacked molecules were more closely packed than
the lying-down molecules,

Variation of the electrochemical potential between

+300 mV and -140 mV after the forced adsorption at

+50 mV produced no change in the two-dimensional
lattice structure of the cytosine molecules. The molecules
remained adsorbed onto the surface of the gold substrate.

Spontaneous adsorption of the cytosine molecules at a
positive rest potential produced a lattice structure consist-
ing of rows of alternating high and low contrast as seen in
Figure 3. The orientation of the molecules in the high-
contrast rows was such that a single row of molecules
appeared as a double stripe. The separation between high *
contrast rows was measured to be (12.3+0.3)A.

Variation of the electrochemical potential from rest
potential to +250 mV after spontaneous adsorption
produced a change in the two-dimensional lattice structure
of the molecules. The alternating rows of high and low
contrast were still intact at +150 mV. By +200 mV,
however, this structure was replaced by bright spots in
slightly disordered rows as shown in Figure 4. The
spacing between rows was measured to be (4.910.5)A.
This structure remained unchanged at +250 mV.

Figure 4
Spontaneously adsorbed cytosine molecules imaged at
+200 mV after an electrochemically driven change in the
two dimensional lattice structure. Bright spots (molecules)
in slightly disordered rows of equal contrast.
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INTERPRETATION OF RESULTS
A change in the lattice structure was observed only when
the cytosine molecules could adsorb spontaneously. In this
case, the interaction between the cytosine molecules was
greater than the interaction between gold and cytosine.
This caused a sheet of cytosine molecules to form, which
“floated” above the gold surface. The intermolecular
interactions permitted two different molecular orientations:
a low-contrast row and a double-striped, high-contrast row.
As the electrochemical potential was increased, the
interaction between gold and cytosine became stronger.
By +200 mV it exceeded the intermolecular interaction.
This caused the sheet of alternating rows of high and low
contrast to disappear and be replaced by a structure
appearing as bright spots in rows of equal contrast,
indicating a single molecular orientation,

The rest potential, which could not be controlled, was
often negative, preventing spontaneous adsorption. When
we forced the gold to be positive, the gold-cytosine
interaction was made to exceed the cytosine-cytosine
interaction and the “floating sheet” was never formed.
Each cytosine molecule was adsorbed onto a particular
spot on the gold surface, forming either a lying-down or
stacked structure. Increasing the electrochemical potential
simply increased or decreased the strength of the adsorp-
tion, but did not change the orientation or two-dimensional
lattice of the molecules.
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ABSTRACT
Molecular dynamics simulations based on valence force fields were used to determine the cubic lattice
constant and formation temperature of randomly alloyed fcc Siy.xCx. Similar techniques were used to
determine the lattice constant and crystalline structure of an ordered structure of SisGe3Cy. A compari-
son was made between the lattice constants found for randomly alloyed silicon carbon, previous results
and Vegard’s law. This comparison showed that Vegard’s law consistently over estimated the lattice

constant of a random alloy.

INTRODUCTION
The band gap of a semiconductor is central in determining
its electronic properties. Thus, the ability to create
substances with varying band gaps is desirable. Silicon,
one of the most widely used semiconducting materials, has
a band gap of approximately 1.17eV. It is thought that
alloying silicon and carbon (which has a large band gap =
5.5eV) would increase the energy gap in the alloy. Optical
technologies would benefit from a band gap larger than
that of silicon. Semiconducting devices only require
materials of different band gaps.

In the case of silicon and carbon (diamond), a large lattice
mismatch of 1.86A, nearly 34%, introduces enormous
strain energies in substitutional defects of about 1.6 eV/
atom 1. Also, carbon is relatively insoluble in silicon, even
at high temperatures (10-3 to 10-4 atomic percent at 1200C
to 1400C).2 However, the formation of Siy.xCx with x=3.5
atomic percent has been demonstrated 3, although some
precipitation of SiC seems likely due to the unusually high
lattice constant of 5.426A. This measure lattice constant is
0.06A greater than that suggested by Vegard’s law.

David Whysong is an undergraduate physics student
at Harvey Mudd College. His academic interests
include computational and theoretical modelling of
various physical systems. Other interests include
philosophy and music. He enjoys playing the piano
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Vegard's law is a simple linear approximation for the
lattice constant of a random alloy. In this case, the known
lattice constants of pure silicon and carbon are used to
define a line from which the lattice constants of random
alloys may be calculated.

To produce a useful alloy, one needs two lattice compatible
materials with different energy gaps. Growing the alloy on
a silicon substrate requires that the alloy have a lattice
constant compatible with that of silicon. Thus, a three
atom alloy, Sij.x.yGeyCx was introduced. The inclusion of
germanium, which has a lattice constant slightly greater
than that of silicon, a = 5.6A, may cause a reduction in the
crystal strain and allow greater carbon concentrations.

The introduction of germanium may be necessary for
tuning the electronic structure as well as assisting in a
lattice match with silicon. Theoretical results have shown
a marked decrease in the energy gap when carbon is added
to silicon in a random alloy4. At concentrations of about
10% carbon, the band gap may become negative, the
crystal would become a conductor rather than a semicon-
ductor.

Molecular dynamics simulations model the motion of
atoms. An interaction potential between atoms of a
random alloy was differentiated to obtain the forces acting
on each atom. The motion of the individual atoms may
then be modeled. For this work, a solution theory was
used to obtain the total energy in supercell alloys.

Molecular dynamic methods, suggested by Keating, were
used which employed the valence force field model to
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relax a supercell of 8,
64 or 512 atoms. 5
The dynamic
calculations used a
fifth order Gear
algorithm to calcu-
late precise forces
and positions. 6 The
Keating potential
involves the summa-
tion of strain energy,
which is the differ-
ence between the
equilibrium bond energy
E), and the actual bond
energy. The strain energy associated with an atom is given
by:

'©
Figure 1

Variables in the Keating model.

» (D)

i,j>i
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where o and [ are interatomic force constant, 7 is the

bond vector and d, is the equilibrium bond distance. The
parameters are diagrammed in Figure 1. Note that there
are two significant terms; the first concerns bond length
differences and the second concerns angular variation

between two bonds. The A(F;-7;)® term represents the

square of the differences between the squares of the actnal
bond length and the ideal bond length. This is summed
over all the bonds labeled by i. The angular term,

A(7;-7;)* has a dot product between two different bond
vectors, giving the energy involved in altering the angle
between the two bonds. The constants which were used in
the calculation are shown in Table 1.

Phase Diagram
To find the temperature at which a silicon-carbon random
alloy will form, the free energy, G, of the crystal must be

calculated:
G=U-TS+PV 2

o B do(A)  Ep(eV)
Si 4850 1381 235 2.32
€ 129.33 84.76 1.56 3.68
Ge 3867 1135 242 2.56
SiC 9742 5261 1.89 3.17
SiGe 43.59 1258 239 2.73
GeC 8400 4806 194 2.59

Table 1

Constants used in the molecular dynamics
simulations.

where U is the internal energy, T is the absolute tempera-
ture, S is the entropy, P is pressure and V is the volume.
The internal energy is determined by molecular dynamics
simulations using the Keating potential. The pressure is
assumed to be zero when the lattice constant is ideal,
hence the PV term is 0. The entropy is found statistically
using the Boltzman equation:

TS =NkT[xInx+(1-x)In(1-x)] , (3)
where x is the concentration of carbon in the silicon carbon
random alloy and k is the Boltzman constant.

Lattice Constant

Molecular dynamics simulations require a knowledge of
the lattice constant at various concentrations, Even a
slight variation in the lattice constant can cause significant
extra strain in the crystal. Two theoretical techniques were
used to find the lattice constant, Vegard’s law and mini-
mum energy curves. Experimental results can also provide
lattice constants for some materials.

If the two elements are silicon and carbon, Vegard’s law
provides a simple linear expression for the alloy lattice
constant A:

A =ag (1-x) +ac(x) @
For Siy_x.yGeyCy alloys, Vegard’s rule becomes:
A =ag(1-x-y)+ag () +ac () ®

where ag., as;, and ac are the lattice constants for germa-
nium, silicon and carbon respectively. This forbids
nonlinear variation of the lattice constant at different
concentrations. Experimental results are desirable, and in

5.5

— — Experiment
Vegord's law
—— Minimwm Cnergy

4.5

Lattice Constant (A)

3.5‘-“-"' P Bl | i R i

Concentration Carbon (slomic peroent)

Figure 2
Lattice constant of Si, C : Vegard's law, experimental
results and minimum energy curve. The experimental
result points are for silicon, carbon and silicon carbide
crystals. The minimum energy results consist of silicon
carbon random alloys.
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Figure 3
Phase diagram of Si, C_random alloy as calculated from
the results of 64 atom supercell molecular dynamics.

the case of silicon carbide, differ significantly from the
value obtained by Vegard’s law.

If the lattice constant of a crystal is forced to a non-ideal
constant value, some extra strain energy will be intro-
duced, due to pressure applied to the system. Comparing
the strain energy to the lattice constant produces a para-
bolic arc for small changes in the alloy lattice constant.
The most desirable lattice constant for a crystal of that
composition must be at the minimum energy configura-
tion, or the minimum of the strain energy vs lattice
constant curve. We used this method to determine the
lattice constants used in the molecular dynamics simula-
tions. This approach was used because it is a consistent
method in that the strain energy can be determined by the
Keating potential, thus the minimum point will always be
the best lattice constant for the molecular dynamics

5500 T T T T

S0 N

500 -

Temperature (K)

g b

0.0 0.20 .40 0.60 0.80 it
Concentrutivn Carbon {atomic perceant)
Figure 4
Phase diagram of Si, C, random alloy calculated from the
results of 512 atom super cell molecular dynamics.

simulation at that concen-
tration.

DISCUSSION
The simulated Siy.xCx
random alloys displayed a
tendency to disassociate
bonds beyond the 2.5 A
limit imposed by the
simulation. Increasing this oo .
limit to 2.6 A was required L e o
for x= 0.1 and an increase
t0 2.7 A was required for
the simulation at x = 0.2.
This unusually high
atomic displacement
indicates a tremendous strain in the crystal. Itis
likely that at concentrations above 2 to 3 atomic percent,
the crystal will not form as a random alloy, but silicon
carbide will precipitate from the pure silicon.

© cse () Guemaium

Figure 5
Layered 5i Ge,C, eight-atom cell.

® e

Figure 2 shows the results for the lattice constant calcula-
tion. The graph shows a comparison with Vegard’s rule
and a smooth curve fit to the three known data points.
There is a pronounced overestimation of the lattice
constant by Vegard’s equation. This may be due to the
larger interatomic force constant, ¢, in carbons, which
would cause the lattice constant to shift more towards that
of carbon, even for small concentrations.

The phase diagrams shown in Figures 3 and 4 indicate
temperature at which the silicon carbon random alloy may
form in a zincblende lattice (face centered cubic). The line
of liguidous is assumed to be linear between the melting
points of silicon and carbon. The high temperatures across
most concentrations indicate that when forming a random
alloy at concentrations greater than a few percent, the
energy required to overcome the strain is sufficient to
cause precipitation of silicon carbide. Any random alloys
with more than a trace of carbon will most likely either
precipitate silicon carbide or form in a metastable state.
This agrees with the experimental problems of producing
alloys at more than a few percent carbon which have not
precipitated into silicon carbide.

A series of strain energy computations were carried out for
a layered form of SisGesC; to determine the lattice
parameters for molecular dynamics simulation. The
structure of the cell is shown in Figure 5. The calculated
strain energy as a function of lattice constant are shown in
Figures 6-9. The strain energy vs. antiplanar lattice
constant plots are useful in determining how large the
supercell should be in a molecular dynamics simulation.
By measuring the strain energy in simulations with various
lattice constants, and fitting a parabolic curve to the
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Figure 6
Layered Si,Ge,C, strain energy vs antiplanar lattice
constant for four different different planar lattices.

results, a minimum strain energy configuration can be
found. This is the lattice constant which is used in subse-
quent simulations.

Due to the planar layered structure, the anitplanar lattice
constant is different from the planar lattice constant. At
this concentration, Vegard’s rule predicts a cubic lattice
with constant of 5.26 A. We found that the lattice is
tetragonal with = b = 4.889 A and ¢ = 5.558 A. Subse-
quent molecular dynamics simulations in cubic cells
revealed a shift in the atomic spacing between the layers
such that the distance between the carbon-germanium and
the silicon layers above and below decreased, while the
distance between the pure germanium layer and the silicon
layers increased. This may be explained by examining the
equilibrium bond distances and o parameters for carbon
and germanium. The carbon atom, with a greater o, exerts
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Figure 7

Layered Si,Ge,C, strain energy vs planar lattice constant
for three different antiplanar lattices.

Planar Laitico Constant & (A}

Figure 8
Layered Si,Ge,C, strain energy vs planar lattice
parameter. The minimum of this curve marks the relaxed
state.

a greater attractive force on the nearest neighbor silicon
atoms than does the germanium. At these lattice param-
eters, the germanium-silicon bonds are nearly relaxed,
while the carbon-silicon bonds are stretched.

It is unlikely that silicon carbon random alloys will be
constructed at carbon concentrations much greater than the
3.5% already found. Silicon germanium carbon alloys,
such as the one simulated here, may yield reduced strain

energies.
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ABSTRACT
A 9-element Csl calorimeter detector array was built to close the beam exit hole of the BGO Ball 47t
detector at LAMPF. The array can serve as a calorimeter for protons and pions with energies up to 260
MeV and 160 MeV respectively. The construction of the calorimeter and its performance during initial

operation at LAMPF are discussed.

INTRODUCTION
Large solid angle detectors are of importance in nuclear
physics when measuring total cross sections directly. They
reduce the need to extrapolate from differential cross
sections at unmeasured angles. Detectors used in many
nuclear physics experiments subtend a solid angle on the
order of 10-2 steradians. The detector is moved to different
angles with respect to a fixed target to measure differential
cross sections. If the reaction being studied involves a two
body final state, the detection of one particle makes the
reconstruction of the path of the other particle possible.
Three-body final states require the detection of two
particles to perform the same kinematic reconstruction.
The measurement of a total cross section requires the
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ability to detect all possible final states and, therefore, all
trajectories. This is best accomplished if the target is
completely surrounded with detection equipment, covering
all 4 of the available solid angle.

The BGO Ball is such a detector that is used in nuclear
physics experiments at the Clinton P. Anderson Meson
Physics Facility (LAMPF). To cover a large solid angle,
the ball consists of 30 bismuth germinate (BGO) detectors
that form a truncated icosahedron, with two pentagons
removed to allow for beam entry and exit. In this configu-
ration, the BGO ball covers 30/32 of the laboratory solid
angle. More detailed information on the BGO large solid
angle detector is available elsewhere.1

A 9-element Csl calorimeter was added to the BGO ball
for several reasons:
a) to close the downstream hole in the detector, where
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The relative positioning of the downstream array and the

AE counter with respect to the BGO ball.
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Figure 2
Schematic diagram of the downstream array (dimensions
incm).

fixed-target kinematics compress scattering events in
the forward direction

b) to provide the same approximate 8 and ¢ informa-
tion as the BGO ball

c) to serve as a veto to reject unscattered incident
particles

d) to allow for particle identification on a plot of total
energy, E, versus differential energy loss, AE.

The relative positions of the BGO ball, the downstream
calorimeter and the plastic AE scintillator are shown
schematically in Figure 1.

THE CALORIMETER
The most important element of this detector array is the
Csl scintillator whose properties are listed in Table 1. Pure
CslI has an emission spectrum with a fast component at
330 nm and a slow component at 450 nm.3 We detected
the fast pulse, since its wavelength is within the sensitivity
range of our photomultiplier tubes (PMT) and the light
output of the fast component is high. The high density of
the crystal stops the very energetic particles produced in
nuclear reactions as well as the particles from the primary
beam. The 30.5 cm thick crystals could completely stop
260 MeV protons and 160 MeV pions. Because this
particle detector absorbs all of the kinetic energy of the
incident particles, it is often referred to as a calorimeter.

Property Csl  Plastic
Density (g/cm3) 451 1.032
Index of Refraction 1.788  1.58
Decay constant (ns) 25 2
Max. Emission Wavelength (nm) 300 425

Table 1

Properties of the scintillation materials.?

The face of each crystal was 7.6 cm x 7.6 cm, tapering
along its 30.5 cm length to a 10.2 cm x 10.2cm square.
The end of the crystal was coupled to a Hamamatsu R4017
PMT with an optical cement.

A large area plastic scintillator was used as a AE detector.
The 9.5 mm thick, 48.3 cm long and 30.5 cm wide
scintillator covered the entire face of the calorimeter. The
characteristics of the plastic scintillator are also shown in
Table 1. Lucite light guides, attached to the left and right
ends of the scintillator, wrapped around the calorimeter
box and were fixed to PMT’s with optical grease. The use
of two PMT’s allowed us to determine the geometric
average AE pulse height, providing a more accurate energy
loss measurement and reducing the position sensitivity.

An aluminum box, shown in Figure 2, was constructed to
hold the crystal assembly. The light guides of the crystals
were fed through holes in the back of the box. The
crystals were held in place with thin pusher plates so that
the calorimeter box could be rotated to access the crystal
light guides without the crystals slipping out of the box.
The entrance window of the box was made of 38.1um
thick tevlar, a thin, black, light tight plastic material.
Each PMT was covered with a p-metal hood which
shielded from stray magnetic fields from the accelerator
magnets. The pi-metal hoods were then sealed to the box
and made light tight using O-rings.

OPERATION
Initial Testing
After testing for light leaks, and before moving the array to
the LAMPF LEP (low energy pion) channel, a high
voltage was applied to each PMT and the mean pulse
height was recorded to allow for gain matching during the
experimental setup. The energy resolution of each crystal
was also measured. A 60Co source was placed at the
entrance window near the crystal being tested. The source
was then removed and a background spectrum subtracted
for the same length of time. The 1.33 MeV photopeak was
located and fit to a Gaussian function. The resolution was
calculated by dividing the full width at half maximum by
the centroid of the peak. A typical pulse height resolution
for the CslI crystals was 25%.

Experimental Setup and Calibration

The calorimeter was moved to the LEP channel and
positioned 24 cm behind the BGO ball. This distance
maximized the projected area of the ball’s exit pentagon
onto the face of the array. The AE counter was positioned
directly in front of the calorimeter. Raw signals from the
PMT’s were sent to analog-to-digital converters (ADC)
which sent signals via CAMAC equipment to a MicroVAX
computer. The pulse height of the signal is proportional to
the energy deposited by the particle. Multiplying that
number by some known calibration parameter yields the
energy of the detected particle.
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The calorimeter was calibrated by directing a 50 MeV pion
beam on each crystal and adjusting the PMT voltage until
the pion yield of all tubes matched each other. The
individual pulses from the CsI and plastic scintillators
were recorded with a fast oscilloscope. The measured
decay constant for the CsI crystals of 2543 ns is consistent
with the published values.

To eliminate background events and to verify that the
calorimeter was detecting scattered particles, a scattering
event was required to pass a series of logical tests. In
incoming pion has to pass through a hole in a scintillator
upstream of the BGO ball, then through a thin scintillator
placed next to the target. An unscattered pion should enter
the center crystal of the calorimeter, so an anti-coincidence
with the center crystal was required. Finally, since this
experiment was looking for a two or more body final state,
twe hits in the BGO ball and calorimeter were required for
an event to be considered valid.

We also measured the time-of-flight of the scattered
particles. A signal in the scintillator next to the target
started the time-to-digital-converter (TDC). A signal from
a crystal in the calorimeter stopped the TDC timer. This
time was converted into a number which is related to the
speed of the scattered particle.

RESULTS
The performance of the calorimeter was evaluated by
scattering 90 MeV and 135 MeV pions from a CD; target.
We expect to see scattered protons from d(r,p)p and
12C(m,2p) reactions and pions from elastic scattering from
carbon and deuterium. For each scattering event, the ADC
and TDC numbers were placed into histograms that
allowed for visual inspection of the data and the rejection
of bad events. In the histogram of the TDC spectrum, two
peaks are apparent: a large peak at t = 0 corresponding to
accidental triggering of the TDC, and a second peak at a
later time that corresponds to true scattering from the
tartet. Using the data from this histogram, an additional
restriction of good time of flight was added to the criterion
for a valid event.

The calorimeter and the AE counter in unison can be used
to identify particles. The energy deposited by a particle in
a thin scintillator is directly proportional to both the mass
and the transit time of the particle. This means that a
proton of a certain energy will deposit more energy in the
AE counter than a pion of the same energy. Therefore, a
histogram of the energy deposited in the Csl crystal versus
the energy deposited in the E counter should show the
different mass particles in continuous bands

A histogram of E vs AE for a 90 MeV pion beam on a CD,
target for events that passed all tests is shown in Figure 3.
Protons form the upper curved band while pion scattering
events form the smaller band below it.  Since the proton
is roughly seven time more massive than the pion, these
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Figure 3
E vs AE spectrum for 90 MeV pions incident on a CD,
target.

bands are easily resolved. Separation of more equally
mass pions and muons was not always possible with this
calorimeter. The muons are located on the left side of the
lower horizontal band, but do somewhat overlap the pion
band. Neutral particles that deposit little energy in the AE
counter and nearly all their energy in the CslI crystal are
also located in this horizontal band, worsening the pion-
muon resolution. Figure 4 shows a similar histogram for a
beam energy of 135 MeV pions. In experiments where
separation of protons is important, the calorimeter per-
forms well.
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