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ON THE FOURTH YEAR OF PUBLICATION
An Editorial

As we start the fourth year of
publication, I thought it of value to
review the publication statistics of
the first three volumes. A total of 136
pages of the Journal have been
published in 6 issues as 24 separate
articles. Five of the articles were
authored by women. Eleven of the
articles came from students at small
colleges, institutions that only offer
a bachelors degree, while the remaining
13 came from research institutions.
There was the same split, 11 - 13, in
articles coming from private and public
institutions respectively.

The largest group of subscribers
to the Journal continues to be members
of the Society of Physics Students. A
very important group of subscribers are
the libraries. They not only archive
the journal such that past volumes are
available to students, but also provide
the backbone of the financial support
that is needed to publish. Over 160
libraries order copies for their journal
collections. This, however, is only a
small percentage of the schools that
have a physics department in the United
States. Subscribers who find that
their campus library does not subscribe
should get the administrative wheels
rolling such that the Journal will be
sent to their school.

Apparently there is a fair
activity in undergraduate research
outside the United States.
Subscriptions are sent to over a dozen
foreign countries. Two of the articles
came from students outside of the
United States. This trend is
continuing as one can see by examining
the table of contents of this issue.
Two articles are from outside the US.

As with any enterprise such as
this Journal, there is a lot of time
invested by a number of people.

Perhaps the least amount of work is in
the publishing of the articles. The
student authors, who do most of the
work, receive the greatest benefit, not
only from the recognition of
publishing, but also learning to do
real physics, rather than just studying
about it. The group that I would like
to recognize here are the faculty who
sponsor the work done by the students.
The time it takes for supervision and
encouragement provided by these special

faculty is seldom recognized as part of
their teaching load. It is done
because they feel that the only way to
learn to do research is by doing it.
Without faculty who are willing to do
this, the physics research community
would find that there are fewer and
fewer students who will have the
interest and committment to sustain it.

I am glad to see that the physics
research groups such as the American
Physical Society are beginning to
recognize the importance of
undergraduate research. Last year, Tak
Leuk Kwok was awarded the Apker Award
by the American Physical Society. This
award was established to recognize the
best piece of undergraduate research
done in the US. I would like to point
out that Mr. Kwok published an earlier
piece of research in Volume 3, Number 1
of the Journal. It was good to get an
independent verification that the
quality of the research published in
this Journal deserves national
recognition.

e A~
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CLASSICAL ELECTROMAGNETIC THEORY IN

C.C.H. Jui,

J.V.A.

Pari and J.

3-d SPACE-TIME

Beauvais

Department of Physics
University of Ottawa

Ottawa,
Canada

K1N

ABSTRACT

Ontario
6N5

In this paper, we formulate electromagnetlc theory in a hypothetlcal
three dimensional space-time, assuming only Gauss' Law and the invariance of

charge in this Minkowski space.

this formulation unique to three dimensions.

The use of axial vectors and operators makes

We introduce two vector

operators which serve as the two dimensional analogs of the cross product and

curl.
magnetic field.
of three dimensional space.

Using these operators, we obtain three equations involving a scalar
These are analogous to three of the four Maxwell's equations
These results are found to agree with the

equations found from the four dimensional space-time STR-covariant tensor

equations applied to three dimensional space-time.

The magnetic field is

found to satisfy the classical wave equation, but the electric field does not,
even though it admits plane wave solutions.

INTRODUCTION

As physics is taught at the
undergraduate level, it often appears
that physical results are independent
of dimensionality. For instance, the
formalism of guantum mechanics is the
same for any number of spatial
dimensions. This is in general true
only for physical theories involving
polar operators within affine systems.
However, when axial operators are used,
such as in the case of electromagnetic
theory, the results are not independent
of dimensionality. As an example of
this, we reformulate Maxwell's
equations for a hypothetical universe
which has only two spatial and one
temporal dimension.

Vector Analysis

Vector quantities encountered in
ordinary three space are of two kinds.
Polar vectors, which include the force
and velocity vectors, are distinguished
by the property that upon mirror
reflection, the components of these
vectors in the mirror plane remain
unchanged. Axial or pseudo-vectors,
such as angular momentum, have
projections that become inverted when
subjected to a similar reflection.
Strictly speaking, the latter are not
vectors at all. They are, in fact,
skew-symmetric second order tensors. A

second order tensor can be represented
as a square matrix.

Table 1 shows the number of free
components in a skew-symmetric second
order tensor as a function of the
number of dimensions (dimensionality).
For the special case of three
dimensions (3-d), there are exactly

dimensionality | 1 2 3 4 5 6 1

number of free

| o 1 3 6 10 15 21
components

Table 1
Number of free components versus
dimensionality for a skew-symmetric
second order tensor.

three independent components,
for a vectoral representation.
dimensions, including the two
dimensional (2-d) one, we lose the
symmetry between the number of
dimensions and the number of
components.

allowing
In other

This same distinction of types

also applies to vector operators. This
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means that axial operators, such as the
curl (a monadic¢ differential operator)
and the cross product (a binary
operator), defined in 3-d are unique to
the 3-d geometry. Consequently, the
3-d electromagnetic theory, which makes
extensive use of axial operators,
cannot be transcribed directly into
other dimensions.

For the purpose of this work, a
reformulation of vector analysis is
required to construct an
electromagnetic theory applicable to
2-d. To this end, we introduce the
"Greenian operator", which is expressed
in a Cartesian coordinate system in 2-d
space as:

G[x.v]|->[v,-x] (1)
or in matrix form:

o 1
G = (2)
= -1 0

Applying the Greenian operator to the
2-d 'del' operator, we obtain a new
'delta' operator:

3 - aff] - [__ (3)

These will serve as the mathematical
tools needed in our development of
Maxwell's equations in 2-d (see section
IIT).

Electromagnetic Theory in 2-d

I. Physical Postulates

We begin by assuming a linear
universe with two spatial and one
temporal dimensions (a Minkowski
3-space) with an affine coordinate
system (x,y,t). We also will assume
that electric charges are present in
this universe, and that they are
invariant under Lorentz
transformations. We further postulate
that Gauss' Law holds in this
hypothetical world. This means that
given any loop C enclosing a spatial
region R, we have:

= 1 ‘/7' AR, = Q
genas =3¢ [fpan = = (4)

where E is the electromagnetic field, n

the outward unit normal to C, p the
charge density distribution and Q is
the total charge enclosed by C.

II. Electrostatics

The assumption of Gauss' Law
implies, for this universe, that a point
charge g at the origin gives rise to a
circularly symmetric electric field
given by:

E[F] = —— (5)

2 MWEGr?

Note that Coulomb's inverse square law
is replaced by a 1/r field because of
the two dimensional representation.
The electrostatic potential for the
point charge is:

q
¢[r]=-mc—,ln[r] (6)

assuming that ¢(1) = 0. Unlike the
potential in 3-d, this potential
function is not bounded, it does not
approach an asymptotic limit at large
distances.

In a similar manner, we can show
that the electric field of an infinite
line of charge with linear charge
density A has a uniform magnitude:

IEl = (7)

and directed perpendicularly away from
the line. Note the resemblance between
this result and that for an infinite
plane of charge in 3-d.

The differential form of Gauss'
Law is:

p
€o

V-E = (8)

Thus, the first of Maxwell's equations
in 2-d is identical to the 3-d
equation.

III. Moving Charges - Magnetostatics
Consider an infinite wire carrying
equal charge densities A of positive
and negative charges moving in opposite
directions at equal speeds vg. The
wire lies along the y = 0 line and a
test charge g is moving at velocity v
in the +x direction. From equation 8,
the components of the electric field in
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the rest frame S' of the test charge case, Ampere's Law:
are given by:
: VYXB =— T (14)
Ex= 0 VXB = pu,J

(9)

’ N = iy + for y>0

E, = o+ = — for y <o

y
2 €,

where A4+ and A'_ are the densities of
the positive and negative carriers in
the rest frame. One can derive the
expression (N, -A_) by simple
space-time relativity (STR), identical
to the analogous case in 3-d given by

Purcell (1):

Ao —N_ = —2Avvy7/c?
—-% (10)
vy = (1 — v¥c? )

Substituting equation 10 into equation
9 gives:

lE'y|= Mi (11)

Transforming back into the lab frame,
the components of the force exerted on
the moving test charge are:

|Fx|= 0

etE,

(12)
|Fy| =qxvcv €, = avi/ce,

where I = 2)\v, is the electric current
in the wire.

In general, it can be shown that a
test charge moving in an arbitrary
direction will experience a
relativistic force perpendicular to its
velocity, as in the 3-d case. However,
the magnitude of the force in the 2-d
case is independent of the position of
the charge. For elegance of
formulation, we shall write this
relativistic force in terms of a
"magnetic" field in analogy to the 3-d
electromagnetic theory. In attempting
to do this, we encounter some
difficulties as a result of the
reduction in spatial dimensionality.
Recalling that in 3-d, the magnetic
field is defined by the Lorentz force
equation:

F = afE-n@ ] (13)

and is known to obey, in the static

As we try to find an equivalent
representation in 2-d, we encounter the
following problems when trying to
transcribe equations 13 and 14:

(a) The cross product in not defined
in 2-d.

(b) The curl is also not defined in
2-—d.

(c) The magnetic field cannot be
represented as a vector in 2-d.

The last difficulty arises because the
3-d magnetic field is an axial vector
(it is defined in the Biot-Savart Law
as a cross product of two polar
vectors). An axial vector has 3 free
components in 3-d representation, but
only 1 in 2-d (see Table 1). Thus, the
magnetic field must be a scalar field
in 2-d representation. The
difficulties in parts (a) and (b) can
be resolved by using the new operators
defined in the section on Vectors.

We define the magnetic field B in
analogy to the 3-d field by the
following force law:

F = QqE + q[B G[;]] (15)

For the case of an infinite wire at y =
0 carrying a current I in the +x
direction, we have:

Ho
2

B= =

(16)

where the + and - signs correspond to
the regions y>0 and y{0. For this
simple case, the difference in the
values of B at the endpoints of any
directed path from point P to point Q
is proportional to the total current
through the path:

B(a)-B(P)| = u_! (17)

This relationship between field and
current can be generalized for any
current density distribution J to give
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the 2-d analog of Ampere's Law:

B(a)-B(P)= ,u‘:[-i—e[_s) (18)

r

where I' is any directed path from P to
Q with line element ds. Applying
equation 18 to directed line segments
parallel to the x and y axes, and taking
the limit that Q approaches P, for a
static current distribution we have:

5B = W, (19)

This is analogous to equation 13 for
3-d. Using this equation, we may
develop a 2-d Biot-Savart Law, using a
vector potential as an intermediate
Step .

IV. Induction and Displacement Current
We define the magnetic flux ¢min
the region R as follows:

¢m=ffs dA (20)
R

This definition of the magnetic flux
results in an induced voltage (e.m.f.)
in the current loop enclosing R given
by the same relation (Faraday's Law) as
in 3-d:

3%m

€==

(21)

The details of the derivation are given
in Purcell (1) and apply to both the
3-d and 2-d configurations.

The e.m.f. is defined in 2-d in the
same manner as in 3-d:

€=fE-d_S (22)
r

Using our new 'delta' operator
(Equation 3), Green's theorem can be
re-written as:

fr‘E ds = -[fn(“g.z)dA (23)

When this is substituted into Faraday's

Law in 2-d (equation 21) we obtain:

ff(E.E)dA= gtﬂ =ff-%3-dn (24)

Equating the two integrands yields:

3E = 2B (25)

ot

This is analogous to the third of
Maxwell's equations in 3-d:

VXE = - 98 (26)
ot

As in the 3-d formulation, the
concept of a displacement current is
required. The derivation is, in fact,
independent of dimensionality, as only
polar vectors and operators are
involved. (2) We write the displacement
current density as:

— dE
o = CoTon &5

This is identical to the definition in
3-d. Adding this term to the free
current, equation 20 becomes:

EB = }lol::]—"‘jD] (28)

Substituting equation 27 into equation
28 gives:

!

3B - u€c,9E = (29)
Ko oat

which is the analog of the fourth of
Maxwell's equations in 3-d:

e e — E
VX B = pod + K€ 3T (30)

Equations 8, 25, and 29 are the
analogs of three of the four Maxwell's
equations in 3-d. The only equation
without an analog is:

V-B =0 (31)

Since B is a scalar field in 2-d, it
appears that no analog exists for
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equation 31. This will be confirmed in
the next section, where a STR-covariant
formulation in 2-d, using the same
formalism as in 3-d, will show that
there are only 3 Maxwell's equations in
2-d. In this way, the apparent
symmetry in the electric and magnetic
fields seen in the free-space Maxwell's
equations is not preserved in the
transition from 3-d to 2-d.

V. STR-Covariant Formulation

An alternate formulation of
electromagnetic theory in 3-d is
possible by exploiting the 4-vector
formulation of STR. This derivation is
discussed in detail elsewhere (3). For
our hypothetical world (a Minkowski
3-space), we may use a similar 3-vector
formulation using the following affine
coordinate system:

X, =X; %, =y; X3= ict (32)

in which the density 3-vector is
written as:

Ja = {Jx. Jy, icr} (33)

and the electromagnetic field tensor E,
a skew-symmetric 2nd order tensor, is
written as the matrix:

0 B -iEx/c
Ea.,g = -B 0 -iEy /o | (34)

—iEyk —iEy/c O

We then apply the state equations (just
the same as those for 4-d space-time):

3E7a

| _ 6E dEgY =
(6E}ﬂﬁ'¥ = é—x-a-ﬁ + WE—-O- X = 0 (35)
e 8 a
— 5 %Bap _ 36
Bags= 3 x5 ko Ja )

In this case, the Greek indices can
take on the values 1,2,3. Equation 35
is symmetric in the indices (cyclic
permutations do not alter the equation).
This property, in addition to the
skew-symmetry of the field tensor,

reduces equation 35 to a single scalar
equation:

OEx_ 9By _ 3B (37)
ay ax ot

which is identical to equation 25.
Solving equation 36, we get three
scalar eguations:

a=1 aB 1 aEx

oy "2t - Molx (38)
aB 1 9Ey
a=2 — = — —= = u.J 39)
3x c? 3t 0Ty (
sy OB o B & (40)
ax ay €

Equations 38 and 39 reiterate the
vector equation 29 and equation 40
restates the divergence law of equation
8.

Thus, the tensor form of the
Maxwell's equations is invariant with
respect to dimensionality. However,
the physical consequences as seen
through vector analysis appear to be
very different in 2-d as compared to
3-d.

VI. Radiation

We now shall attempt to derive
wave equations for the E and B fields
in a vacuum. In free space, our
Maxwell's equations are:

V-E=o0 (41)
——-E _ 0B
5 - =% (42)
— 2E

8B = €M T3 (43)

Applying the operator to equation 43
gives:

— - a -— -
5:(5B) = 8°B = M€ (8-E) (4)

Substituting equation 42 into equation
44, we get:

g 12°8B
8 - Zou (45)

h 2 a 2 2
where Tl oL b b vz
dy 9x 2y 2X



VOLUME IV, NUMBER 1

THE JOURNAL OF UNDERGRADUATE RESEARCH IN PHYSICS PAGE 8

Hence we get the relationship:

2°B

1
c? at2

viB = (46)

which shows that the magnetic field
satisfies a homogenous ideal wave
equation in free space.

Doing the same for the electric
field yields:

35E1= Yex OBy %, 2%

ayz axa-y ' axz - ax ay (47}
1 3%E
Y FYY)

which is not in the form of the ideal
wave equation. The form of the wave
equation is invariant under orthogonal
transformations of space-time
coordinates (Lorentz transformations).
(4) Thus, the electric field does not
satisfy a classical wave equation.
Never-the-less, equation 47 does admit
plane-wave solutions, for instance:

E(x,y,t) = ¥y E; cos(kx - wt (483

where w/k = ¢, with the electric
field oscillating perpendicular to the
direction of propagation. There is no
freedom in the mode of polarization, as
there is only one transverse degree of
freedom.

CONCLUSIONS

We have shown that in 2-d space,
there are only three Maxwell's
equations. It is seen that our
vectoral derivation from simple
postulates gives the same results as
the general tensor formulation. The
most surprising aspect of our results
is that the electric field does not
satisfy the classical wave equation.
It appears that the presence of harmonic
electromagnetic radiation in the
physical world is primarily the result
of the dimensionality of our universe.
In fact, the 2-d circular symmetrical
solution of the wave equation has a
radial part which is oscillating, but
not periodic. Thus, it seems that a
3-d universe is unique in possessing
many properties which we take for
granted.
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WIND AND SOLAR ENERGY IN NORTHEAST IOWA *
Samuel P. Benz and Stephen D. Nelson
Physics Department
Luther College
Decorah, IA 52101
) ABSTRACT
Wind and solar energy in Northeast Iowa were studied during 1984-85. By

comparing wind energy at two sites, it is shown that location has a strong

influence on wind energy.
speed.
a seasonal basis.

INTRODUCTION

This research project is
of wind power and solar power
suitability as energy sources in
northeastern Iowa. This type of
experiment has already been does at
Iowa State University (1) and at Luther
College (2). It is the intent of this
experiment to compare the collected
data with previous long term results
and to see how location affects the
wind power.

a study
and their

By incorporating our results with
those of Takle and Shaw (1), we hope to
show that the conclusions made at Iowa
State University also hold true in
Northeast Iowa. Our data, collected
between May 1984 and January 1985,
measured the deviations in wind power
at two different sites. This limited
data set, when viewed in the context of
existing data, allowed us to determine
the effectiveness of a favorable
location.

THEORY

The power available from the wind
is proportional to the cube of the wind
speed. The meteorological wind power
per area is given by:

—_ = (1)

where P/A is the power per area
(watts/m?), v the wind speed, and p the
average density of the air (1.29 kg/m3).

Wind power is shown to be different from wind
Weekly averages of wind and sun energy are found to be complementary on

It should be noted that the
average wind speed does not give the
correct value for the average wind
power. When the wind speed varies, the
higher wind speeds give a much larger
contribution to the average wind power
than the lower speeds. To study this
effect, we picked two sites with
different wind speed profiles.

Luther College is set in a large
river valley, surrounded by many small
hills and bluffs. Site 1 is located on
the Luther College Campus. The
anemometer is located on the top of the
science building. There are many trees
and buildings nearby to disturb the air
flow. These obstructions, as well as
the geographic location, make this site
unfavorable.

Site 2 is located at the Luther
College Observatory, eight miles north
of Site 1. This site lies on a flat
plain, surrounded by fields. The
anemometer is ten meters from the
ground on the top of a pole. It is
effectively the highest point in
relation to the surrounding area, with
no obstructing buildings or trees.
This site is indicative of possible
sites for a wind generator for the
northeast Iowa region.

DATA ACQUISITION

At each site we have a Commodore
VIC-20 dedicated to monitoring the wind
energy. At Site 2, a non-interruptable
battery backup was used to alleviate
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power outage problems. The computer at
Site 1 also monitors the solar energy
for the area. The anemometers are of
the "contact type", obtained from M.C.
Stewart, Ashburnham, MA 01430. A
four-cup wheel on a vertical spindle is
geared to close a reed switch once for
the passage of each 1/60 th mile of
wind. This switch is connected to the
CBl1 input of the VIC-20 user port. The
wind speed is found by determining the
time between closings of the switch,
using the internal clock of the
computer. This method, when compared
with a calibrated anemometer, gave a
close approximation to the
instantaneous wind speed.

We found the average wind speed
cubed over a 7.5 minute interval using
the following formula:

<V3> = Ev_s At (2)
I

1
T i i

where v is the instantaneous wind speed
and t is the time interval between
closings, and T is the total elapsed
time (7.5 minutes). The values for the
the average of the cube of the wind
speed were stored in the computer
memory, averaged at the end of the day,
and then stored on a tape deck. The
average wind speed for each day was
also collected. This information is
interesting in itself, but is is also a
good check to see if the collected
values of the wind power are
reasonable. The wind speed data was
found in the same manner as equation 2:

(Vv == Z v; At (3)
I

1
'? i

To determine the energy from the
sun, an Epply Precision Spectral
Pyranometer Model P5P was used as the
transducer. The device is on the roof
of the science building at Site 1, with
nothing obstructing the sunlight. The
output of the pyranometer is amplified
and sent to an 8-bit analog-to-digital
converter. The computer samples the
ADC output eight times each hour. These
values are adjusted such that the
stored values are the solar insolation
in Joules/m2 ., This solar data
acquisition system has been in
operation since 1976.

RESULTS

To analyze the data, we reduced
wind speed cubed and solar energy values

to weekly and monthly averages. Since
we are interested in making realistic
comparisons in solar and wind generated
electricity, we multiplied the raw wind
energy available by a factor of .3
which is typical or the efficiency of
an average wind driven electrical
generator (3). No reduction was done

15

10
g
1l =
i 1 &
| 5 &
i w
! Il " 4 )
: (i1l I 1 &
8 ( (1111 3 =
‘N
| | | J
] | | | ‘
11l HEBOENN ! 1 0
0 0 TRD 00 D - - (018 ) 0 ) S < = (OB (U D 0 THD I & =KD (U )
M T D - P O 0 40U 0 Tk 10 (0 T | oo

28
28
29

-y == L U U [T : Sg ToTuTul.« eI
MAY | JUN |JUL [AUG | SEP| OCT | NOV|DEC JAN

FIGURE 1
Weekly averaged wind speed at Site
2 by the end of the week day
number and month.

for the solar energy (insolation); 10%
efficiency could be used if a panel of
photovoltaic cells were used to produce
electricity; while a 50% efficiency
could be used if thermal energy were
accumulated. The wind velocity data was
converted to power/area using equation

1 and then to KWH/m?2 , the standard
commercial electrical energy unit for
comparing collected energy sources. The
solar energy is converted using the
formula:

10° J/m2 = 0.2778kWh/m?2 (4)

Figure 1 shows the average wind
speed measured. The effect of the
varying wind speed on the wind power
can be seen in Figure 2. There are very
large changes in the wind power and
relatively small changes in the wind
velocity profile. This is due to the
fact that the wind power is proportional
to the instantaneous wind speed cubed
and not the cube of the average wind
speed.
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Examination of Figures 2 and 3
shows the difference in the wind energy
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FIGURE 2
Weekly averaged wind power at Site
2 by end of week day number and
month.

collected at the two sites. Clearly
location makes a substantial difference
in t he amount of wind energy
collected. Our results indicate that
at Site 2, with its open, uninhibited
surroundings and higher relative
elevation, here was appoximately four
times more energy available than at
Site 1. Thus, location is an important
factor when considering the performance
of a wind-powered generator. Because
of this, Site 2 will be used in further
comparisons of results.

We will compare our results with
the previous observations of Takle and
shaw (1). Using Fourier analysis of

10

(KWH/m?)

WIND ENERGY

FIGURE 3
Weekly averaged wind power at Site
1 by end of week day number and
month.

logarithmically averaged data over an
entire year span, they derived results
for the expected average meteorological
solar and wind power per area (see
Figure 4). Although our data has been
corrected for practical use, it should
be noted that our location (Site 2) has
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FIGURE 4
Predicted meteorological daily
energies for wind, solar and
wind-solar combined (1).
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FIGURE 5
Weekly averaged solar power by end
of week day number and month.

more wind energy available than the
average. The general slope of our curve
does seem to follow the expected

results with the minimum occuring in
June, July, and August and higher
relative values in November, December,
and January. Our data fluctuates more
than that of Takle and Shaw because we
have used weekly averages.

The solar data, which was
collected during October through
January, seems to be fairly consistent
at about 2 KWH/m2 (see Figure 5). This

=110

i

1
w
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FIGURE 6
Monthly averaged solar power for
1977 (2).

data also agrees with the curve of
Takle and Shaw. Their minimum in
December is more noticeable than ours
because of its time averaged nature,
whereas we have data only spanning one
winter. To make a more meaningful
comparison of the solar energy in
northeast Iowa to the results of Takle
and Shaw, the results of the 1977 study
(2) are examined (see Figure 6). Note
the maximum occuring during the summer
months.
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FIGURE 7
Combined weekly averaged solar and
wind power by end of week day
number and month. This is the sum
of the results shown on Figures 2
and 5.
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When we combine wind and solar
energy together, we find that the
seasonal minima and maxima are
complementary (see Figures 4 and 6).
This is noticeable in the data of
Tackle and Shaw, where the total energy
curve fluctuates less than the sun and
wind energies separately. Our data
(Figure 7) shows the same trend. Thus,
if a station uses both wind and solar
collectors, it provides a much more
consistent and flexible energy system.
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PERCOLATION THRESHOLD IN UNUSUAL LATTICES

Martin Schulte and Peter Sprenger
Institutue of Theoretical Physics
Cologne University
5000 Koln 41
Federal Republic of Germany

We determined the threshold probability p. for percolat%on in a pentagon
lattice where each unit cell has five corners. The calculations, written 1in
Fortran V, use the Hoshen-Kopelman algorithm. Our results are consistent with

predictions of Waldor et. al. (1).

(1) H.M. Waldor, W.F. Wolff, and J. Zittartz, Phys. Lett. A, 104, 355.

INTRODUCTION

Imagine a fisherman's net. This
net consists of many strings and knots.
The knots hold the strings together.
After a few years of extensive use, the
net becomes worn and many strings and
knots are missing. When we count the
remaining strings and knots, we find
that they are set randomly in the
original shape of the net, with some
probability p. As more knots and
strings disappear, the probability p of
finding an unbroken knot or string
decreases, and at some point p = p..
the net separates into two parts. Our
problem is to determine this threshold
probability p. for a particular shaped
net. Since there is more than one
string attached to a knot, one has to
be concerned whether a knot breaks or a
string breaks.

This story can be transformed into
more scientific language: the strings
become bonds; the knots become sites
and the net a cluster. The probability
at which the net splits into two parts
is the percolation threshold.

PROCEDURE

We separate our task into two
parts: finding the bond percolation
threshold and the site percolation
threshold for different lattice types.
The values for the threshold

probabilities for square and honeycomb
lattices have been calculated by others
and are well known. This paper reports
our calculations to determine these
values for the pentagon lattice, where
each unit cell has five corners (1).
OQur programs to calculate the
percolation thresholds, written in
FORTRAN V, use the Hoshen-Kopelman
algorithm and the well known method of
determining p. by iteration for one
lattice size (2). We do the
calculations for a number of different
finite lattice sizes and then
extrapolate to find the percolation
threshold for an infinite lattice.

RESULTS

Using the methods described above,
we get the following results when
extrapolating to infinite lattices:

p. bond percolation for a
pentagon lattice: (0.579=*
0.001) (See Figure
1).

p. sSite percolation for a
pentagon lattice: (0.628=*%
0.001) (See Table 1)

P, site percolation for a
four-dimensional lattice:
(0.196*0.002) (See Table
1)

p. bond percolation for a
four-dimensional lattice:
(0.160*.0005) (3).
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FIGURE 1
A plot of L34 (left scale crosses)
and Ap. (right scale dots) versus
concentration p for pentagon
lattice site percolation. The
data are expected to
asymptotically approach straight
lines ending at the same
percolation threshold p. as
indicated in this figure.

The critical exponent v (where the
standard deviation for the percolation
threshold Apgce L¥) was found to be
consistent with ¢ = 4/3. This is the
accepted two-dimensional value (2) for
both bond and site percolation.

CONCLUSIONS

Table II shows that the p wvalues
for the pentagon lattice interpolates
the values of the square and honeycomb
lattice. We also show that Waldor et
al’s prediction (1) that p. is close
to .574 is good. The value for matches
the results known for other lattices.
For the four-dimensional lattice, we
improved the known values for site
percolation and confirmed the more
accurate series result (4) for bond
percolation.

Site percolation in the pentagon lattice

L N P AP
400 75 .627479  .003726
300 150 .627388 .004673
200 125  .626452 .006337
100 537 .625212 .010484
50 375 .622840 .016785

Site percolation in the four-dimensional lattice

30 60 «197965 .003175
25 60 .199268 .003600
20 50 .199922 .005220
17 50 .200840 006217
13 50 202598 .009107
10 60 .205013 .013913
TABLE I

Computer generated data for site
percolation for the pentagon and
four-dimensional lattice. L is
the system size and N the number
of runs.
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bond site
triangular 0.347 0.5
square 0.5 0.593
pentagon 0.579 0.628
honeycomb 0.653 0.696
TABLE II

Results for bond and site
percolation thresholds for various
lattice shapes.
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QCD, LATTICE GAUGE THEORY, MONTE CARLO CALCULATIONS AND INSTANTONS

Rodney Kinney
Physics Department

Pasadena,

CA 91125

A method is introduced to better study quantities which are related to
the topological charge in lattice guage theory of Quantum Chromodynamics. The
method will use global Monte Carlo steps to calculate the relative weights of
the topological sectors, while separate runs are performed in each sector. The
Monte Carlo procedure is modified to prevent tunneling between sectors by
restricting the action density to be less than 0.25 per plaquette. This value
will, we hope, be small enough to prevent tunneling yet large enough not to

affect the dynamics of the lattice.

INTRODUCTION

Quantum Chromodynamics (QCD) is a
theory that was introduced about a
decade ago in the hope of providing a
complete explanation of the observed
behavior of the strong force. So far,
QCD has provided impressive predictions
that indicate that it could be the
theory for which physicists are looking,
and has collected a large following. A
thorough review of QCD can be found
elsewhere (1).

QCD is a quantum field theory in
which quarks and gluons interact amongst
themselves . The theory is a
Lagrangian field theory. One defines a
Lagrangian density L. The expectation
of any physical observable is given by:

-iS .
e

1
<0>=-Z—f0[L'] dL

S =fL’ d3 dt (1)

Z:feide'

where S is tha action of the Lagrangain
density L', O(L') is the value that the
observable taken for the particular
field configuration L' and Z is a
normalization factor. The integrations

dL' are over all possible forms of the
Lagrangian field, a difficult operation
to carry out or even to define. The
imaginary exponent introduces
oscillations which are difficult to
manage. Matters can be simplified by
the variable change:

t =t = - it (2)

This makes the time dimension
equivalent to the three spatial
dimensions. Physical results may be
retrieved by analytically continuing
back into real time. The rest of this
paper will deal with Euclidean four
dimensional space: three spatial
dimensions and one imaginary temporal
dimension.

Pseudo-particles

The main contributing terms to the
integrand of Equation 1 over
configurations are those for which the
action is minimal. Finding these
configurations amounts to solving the
set of field equations which are derived
from the classical Euler-Lagrange
equations used for solving Hamilton's
principle of least action (2). The
solutions which minimize the action are
called topological solitons (also
pseudo-particles), and have been the
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subject of much study, both as they
relate to QCD (as well as solid state
and plasma physics) and as purely
mathematical objects.

In four-dimensional Euclidean
space, there is a pseudo-particle called
the instanton. One can define a
quantity, called the topological charge
g, which takes on only integral values
and depends on the configuration of the
Lagrangian field. Configurations can
be divided into groups with different q,
said to belong to different topological
sectors. One can prove that continuous
infintesimal changes to a configuration
cannot bring it into a different
topological sector. Thus, topological
charge is conserved. The g=0 solution
is trivial: the vacuum. When the
solution for the g=1 case was found
(3), it was called the instanton. The
physical interpretation of
pseudo-particles is not certain, but
their existence has been used to solve
some symmetry-breaking problems that
have plagued QCD in the past (4).

Lattice Gauge Theories

One parameter that emerges in QCD
is the coupling constant g. While the
mathematics of QCD are too complicated
to solve exactly, results often can be
obtained through perturbation theory,
usually expanding about small g.
Recently, a new approach to QCD has
been taken in order to study the region
out of the realm of perturbation
theory, that of strong coupling. The
method consists of defining the theory
on a lattice, a four-dimensional
hypercubical lattice of points
separated by links of finite length.
Associated with each link is a matrix
of a particular group. For our
studies, we have used the group SU(2).
The field is defined on the links of
the lattice such that when a particle
moves from one site to another, its
(vector) wave function becomes
multiplied by the matrix of the link
between the two sites. 1In a properly
defined limit of lattice spacing (going
to zero), the continuum theory is
retrieved, and physical results can be
obtained. A complete review of lattice
gauge theories can be found elsewhere

(5}.

The action in a lattice gauge
theory is defined as follows. Consider
four sites at the corners of a square
of the smallest size that the lattice
spacing will allow. Such a square is
called a plaquette. The transporter,
U, around the plaquette is the matrix

that is the product of the matrices
associated with the links that are the
sides of the plaquette. The action of
the entire lattice is obtained by
summing over all plaquettes:

St=BZIS, B=4/g?
i

(3)

s, =1- 1/2 ne['rr{ui}]

where S; is the action of the ith
plagquette.

The expectation value of physical
observables is defined in the same
manner as in the continuum case, except
that for lattice theories, the integral
over all possible configurations
becomes a sum that one can define and
even evaluate. To obtain all possible
configurations of the field, one merely
has to vary the matrices of the links
throughout all combinations of values.
Of course, this is still not a very
practical thing to do. Instead, one
examines the expression for the
averages of the observables:

<0>=1/Z $0 e BS

(4)
1

The first sum is over all possible
values of the link matrices. The second
sum is over all the plaquettes.

One can see that with the

correspondences:
B—1/kT (5)
and
S —> Energy (6)

one has the same expressions that
appear for observables in a statistical
system at temperature T. The problem
of QCD with large coupling constant
becomes analogous to a four-dimensional
statistical system at high temperature.
Weak coupling corresponds to a system
at low temperature. At this point, one
can turn to methods used by statistical
physicists using computers to simulate
systems in thermal equilibrium. The
method most often used is that of Monte
Carlo.
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Monte Carlo Simulations

Monte Carlo simulations in lattice
QCD start with the system in some
initial configuration. From there,

small changes in the system are offered.

New configurations are accepted with a
Boltzmann probability:

e'B[Snew - st:lld:| (7)

(If Spew < Sold+ the probability of
acceptance is 1.) Eventually the system
reaches thermal equilibrium and the
measurable guantities can be determined
directly.

Simulations on the lattice run
into problems when confronted with
matters that have to do with
topological charge. First of all,
topological charge is difficult to
define on the lattice. Some
definitions have been presented (6),
but they are complicated and take much
time for a computer to work out. They
also do not always give the correct

value for the observable. Another ma jor

problem is that any configuration on
the lattice can be deformed into any
other by continuous changes of the
links. Topological charge therefore is
not conserved. In measuring values of
the quantities such as<g2>, the
system is constantly tunneling between
topological sectors. One must
continually calculate g in order to be
sure in which sector one is presently.
The work we are carrying out is an
attempt to resolve these problems and
allow Monte Carlo studies of different
topological sectors on the lattice.

CALCULATIONS

The idea is to perform separate
runs in each topological sector. We
modify the Monte Carlo procedure so
that the system cannot tunnel. We then
perform runs starting from a
configuration of whose charge we are
certain, and never have to compute the
charge again. The value of any
observable will be the average of its
value in all of the sectors, with
appropriate weighting. The relative
weights of the sectors can be found in
a straight forward manner. The ratio of
the weights of two sectors is the ratio
of the probabilities for each to go
into the other as given by the
Boltzmann probability.

Preventing tunneling

The topological charge cannot
change gradually. It must change from
one integer to another, and that change
must take place at one particular step,
at one particular link. If one can
isolate the step which causes the
tunneling, one can prevent the change.
It has been shown (7) that there is a
minimum energy density in the vicinity
of the link that changes the charge.
This means that at least one plaquette
will have an action greater than a
certain value, which is called epsilon.
This epsilon is independent of both
lattice size and the coupling constant
(B). If the Monte Carlo updating
procedure simply does not accept any
configuration which has plaquettes of
action greater than epsilon, then the
system cannot tunnel. The problem has
been to find an epsilon which is large
enough not to interfere too severely
with the behavior of the lattice, but
which will still prevent tunneling.

Monte Carlo runs were made on an
SU(2) lattice of seven sites in each
direction (a typical size). Candidate
configurations were generated by going
link by 1link through the lattice. Each
link was multiplied by a random matrix
close to the identity matrix. Once
that change had been accepted or
re jected, we moved on to the next link,
and so on. The process of going once
through the lattice and updating each
link is called one sweep.

An instanton on the lattice, left
to itself at zero temperature (infinite
B), normally will decay into the wvacuum
in about 200 sweeps. We tested our
epsilon condition by performing runs at
infinite B with different epsilons and
watching for the instanton to decay
into the vacuum. Those that did not
decay, froze into a state in which any
change would either increase the action
(and thus be rejected by the Boltzmann
condition at zero temperature) or
violate the epsilon condition. The
system remained stationary in the g=1
sector.

Table 1 shows a run with epsilon
equal to .245. The frames show
plaquette energies in a single plane of
the hypercube. This set of values
shows an instanton that has been
subjected to several sweeps at a very
high temperature. The boiling has
obliterated any trace of the instanton.
If the epsilon condition restraint is

PAGE 19
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.000 .021 .077 . 066 .022 .051
.118 017 .010 .028 .244 . 006
022 .013 .020 .002 .002 . 009
015 . 000 .013 .011 .048 .013
.025 .031 . 004 .035 .002 .001
.027 .024 .003 .014 .003 012

TABLE 1
Plaquette energies in a single
plane of the hypercube. The
distribution of energies is
characteristic of boiling
obliterating any trace of the
instanton.

.000 .002 .003 .002 .001 . 000
.001 .006 .033 .025 .004 .001
.003 .032 .245 «245 .020 .002
.002 .021 «245 « 206 .016 -002
.001 . 004 .018 .014 .003 .001
.000 .001 .002 . 002 .001 .000

TABLE 2
The same run as shown in Table 1
after several hundred sweeps at
zero temperature. The lattice
has settled down to an instanton.

successful, the topological charge
should still be one. Table 2 shows the
same run after several hundred sweeps
at zero temperature. The lattice has
settled down to an instanton, and it
will go no further.

Runs with epsilon greater than .25
did not prevent tunneling. The boiled
instanton, when refrozen, would settle
down to the vacuum (all plaguette
energies equal to zero). Since a
plaquette has an energy between 0 and 1,
restricting each plaguette to be below
.25 energy is too constricting for most
applications. There are, however,
regimes of very high B which may still
allow the use of the epsilon constraint
without significantly hampering the
lattice dynamics.

An alternative method of keeping
down the energy density is to restrict
the sum of the actions of the

plaquettes surrounding any single link
to be less than some value (again
called epsilon). This condition will
also suppress tunneling and is less
restrictive than the first condition.
The new epsilon should be about six
times the old value. Our results
indicate a new value of epsilon of
about 1.5. A preliminary comparison of
the results using this new epsilon
condition seems quite encouraging.

If the new epsilon condition
proves still to be too restrictive, its
effect can be lessened by going to
larger lattice sizes. It is unlikely
that the increased time needed for
larger lattices will negate the
advantages gained by our method.
Epsilons just under the critical value,
while still allowing tunneling, did
restrict it so that the system did not
tunnel until nearly 1500 sweeps.
Perhaps enforcing a relatively weak
epsilon condition will be innocuous
enough not to affect the behavior of
the statistics of the lattice, but will
slow the tunneling such that checks of
the topological charge need be made
less often. This will still greatly
improve the prospects for the study of
instantons on the lattice.
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A COMPREHENSIVE STUDY AND ANALYSIS OF A SIGMA PI SIGMA LAPEL PIN USING X-RAY

FLUORESCENCE

R.A. Avedisian and B.K. Bellis
Physics Department
California State University, Fresno

Fresno,

ABSTRACT

CA 93740

We determined the chemical composition of a Sigma Pi Sigma lapel pin
gsing X-ray flourescence. From our results it can be stated that "old gold"
is largely coppper with small amounts of nickle, zinc, and of course, gold.

In this experiment, the
composition of a Sigma Pi Sigma lapel
pin was determined using X-ray
fluorescence analysis. Three different
pins were analyzed, each providing
essentially the same results. The
analyses were done using the direct
fluorescence method. The system used
to find the content of the pins
consisted of a modified Hewlett-Packard
X-ray machine, an Ortec X-ray detector
and a Tracor-Northern 1750 multichannel
analyzer. The exposures were for 300
seconds with an operating potential of
30 kV and a tube current of 2.5 ma.

Figure 1 is a semi-log plot of
counts vs X-ray energy. The semi-log
plot enhances the peaks of the less
abundant elements. The peaks are
labeled in ascending order of energy.
Peak one is from atmospheric argon.
Peak two is from the titanium
collimator in the X-ray path. Table 1
identifies the remaining peaks due to
the elements in the pin.

Peak Number Element
3 Iron
4 Nickel
5 & 7 Copper
6 Zinc
8 & 9 Gold
TABLE 1

Identification of peaks in Figure 1

Peaks 10 and 11 are from the detector
summing of the copper-nickel and
copper-copper peaks respectively.

Connis

Nuargy s MV

FIGURE 1
A semi-log plot of Counts vs
Energy for the X-ray fluorescence
spectrum of a Sigma Pi Sigma lapel
pin. Table 1 identifies the peaks
labled on the graph.

Element Counts under peak
copper 115,000
nickel 31,000
gold 3,100
zinc 2,900
all others <1,000
Table 2

Net counts under the peaks in Figure 1.
The number of counts is directly
related to the relative abundance.
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The relative abundances of the
elements can be estimated by the total
number of counts under each peak.

Table 2 shows the net counts under each
of the peaks. This shows that the
primary constituents of the pin are
copper and nickel. There are also
trace amounts of zinc, gold and iron
present. Figure 2, a plot of counts
vs. X-ray energy using a linear scale,
clearly shows the relative abundance of
each element in the lapel pin. Since
the pin is made of "old gold", it can
be stated that "old gold" is largely
copper with very small amounts of gold
present.

(53]
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Counts
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FIGURE 2
A linear plot of the data shown in
Figure 1. This shows well the
relative abundance of the elements
in the Sigma Pi Sigma lapel pin.
See Table 1 for identification of
the peaks.




