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A NOTE FROM THE EDITOR ABOUT
THE BENDIX AWARDS

For a number of years the Society
of Physics Students and Sigma Pi Sigma
have given small awards for research
done by the various chapters. This has
been funded by a grant from the Bendix
Corporation. The aim of these awards
is to encourage the SPS chapters to
engage in some research project that
would involve a number of its members.
The grant requests can be submitted by
ggy SPS chapter and can be as large at

50.

It appears to me that many
students in the various chapters are
unaware of the Bendix awards program.
It is an ideal place to request support
for undergraduate research pro jects.
Has your chapter applied for one? Do
you know how to apply? Your chapter
advisor has the information about these
awards.

One of the papers in this issue
was supported by a Bendix Award. It
seems most fitting that this work
should be published in the research
journal of the Society of Physics
Students.

As a way of saying congratulations
to those chapters that submitted the
winning proposals and making the SPS
members more aware of the program, we
are publishing the abstracts and/or
titles of the winning awards for the
1983 - 1984 year.

BENDIX AWARD WINNERS
1983-1984

A VISIBLE LIGHT DOPPLER VELOCIMETER
INTERFACED TO A MICROCOMPUTER
East Carolina University Chapter

The Society of Physics Students at
East Carolina University proposes to
build a Doppler velocimeter using a
small Ne-He laser and a microcomputer.
The velocimeter then will be used as a
demonstration experiment in the Physics
Department and as a tool for measuring
the velocity of air track carts in the
sophomore lab sequence.

MEASUREMENT OF THE EFFECT FERROFLUIDS
ON POLARIZED LIGHT
Georgia Institute of Technology

A COMPUTER INTERFACING PROJECT TO
IMPROVE THE UTILITY AND SENSITIVITY OF A
CONVENTIONAL NUCLEAR MAGNETIC RESONANCE
SPECTROMETER

Iona College Chapter

This proposal describes an
activity which will merge the interests
of the three major segments of
undergraduate physical science students
at Iona College. We propose to couple
the output of a conventional nuclear
magnetic resonance spectrometer to
available micro and minicomputers. A
student designed interface will couple
the spectrometer to a microprocesssor
used as a data-logger and intermediate
storage device. Transfer of the data
to a computer will permit data analysis
with emphasis on maximization of the
signal to noise ratio for signals from
low concentration solutions of organic
molecules which are of interest to
members of the Chemistry and Biology
faculties. Design of the data handling
system, selection of the best computer
from those available and the writing of
software are all components of this
project.

EVALUATION OF A LARGE DIFFERENTIAL
EXPANSION CAPACITANCE THERMOMETER
Jacksonville University Chapter

This project investigates the
performance of a three terminal
ultra-sensitive capacitance thermometer
conceived, designed, and constructed by
two SPS members in 1982-1983 to study
low temperature transitions in
ferroelectrics. We expect to detect
temperature changes of 1 micro degree
Kelvin using a sensitive capacitance
bridge and the large differential
expansion between NILO and copper.

CONSTRUCTION OF A TUNABLE DYE LASER FOR
USE WITH A NITROGEN LASER
Southern Oregon State College Chapter

To construct a tunable dye laser
in conjunction with our nitrogen laser.
The dye laser may be tuned to excite
selectively any given transition within
the wavelength of available dyes. The
transitions will be observed and
studied experimentally by physicists
and the general public.

SOLAR LASER
SUNY Oneonta Chapter

The purpose of the experiment
proposed by our SPS chapter is to build
a continuous solar pumped laser. This
laser will be of the type described in a
recent NASA Technical Brief on the
subject of solar powered lasers. Our
experiment will use an ultra-violet
lamp to simulate the ultra-violet band
of the sun. We plan to use recently
acquired minicomputers and an
analog-to-digital converter to
automatically collect and interpret the

PAGE 21
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output of our laser and our
photovoltaic cells.

WEATHER SATELLITE RECEIVING STATION
Thiel College Chapter

The Society of Physics Students at
Thiel College proposes to expand and
update their current earth satellite
receiving station by designing and
developing a weather satellite
receiving station. The main design
would be a display method for WEFAX
transmissions from the GOES satellites.
Several systems are presently under
study. These include the use of a
modified oscilloscope, facsimile
machine and digital scan system. The
main item to be purchased will be the
S-band downconverter. The project will
focus attention on the SPS and our
environmental sciences program and lead
to a number of student projects.

ANGULAR MOMENTUM OF AN ELECTRIC CURRENT
N A SUPERCONDUCTING LOOP
Washington University Chapter

Using a superconducting current
loop as a torsional pendulum, we intend
to demonstrate that current carrying
electrons have momentum. We will
observe qualitatively and
guantitatively the mechanical resonance
caused by a current which varies at the
resonant frequency of a torsional
pendulum.

PAGE 22
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ASYMPTOTIC BEHAVIOR OF DIFFUSION ON RANDOM LATTICES BELOW THE PERCOLATION

Carola J.

THRESHOLD

Fassnacht

Luxemburger Str. 426

5000 Kéln 41
West Germany

ABSTRACT

The asymptotic behavior of diffusion on a random lattice below the
percolation threshold was investigated using computer modeling. Deviations
from an assumption of Mitescu and Rossenq ( Annals of Israel Physics Society

5, 81 (1983) ) were found.

INTRODUCTION

This research deals with the "ant
in a labyrinth" problem. Imagine a
lattice that has the structure of a
chess board, but in three dimensions.
This lattice consists of many cubes
called "sites"., These sites are either
free or occupied. The lattice as a
whole has a concentration of occupied
sites p, but the distribution of
occupied sites within the lattice is
completely random.

Now imagine that an ant is placed
in the lattice. The ant can only stay
on the occupied sites. If it wished to
"walk", it must pass from one occupied
site to one of the six nearest-neighbor
sites which is also occupied. Thus
pathways will be formed along which the
ant can walk, pathways created by
clusters of occupied sites. Examples
of such clusters are shown in Figure 1.

For low concentrations ( p<1 ),
the clusters of adjoining sites will be
small. This allows the ant only a
small range within which to walk. For
concentrations near p = 1 (almost all
sites occupied) there will be one
continuous cluster with only a few
holes in it. The pathway for the ant
then stretches across the whole
lattice. Somewhere between these
concentrations lies a critical
concentration p. where there are many
clusters of occupied sites, and one of
them reaches from one end of the
lattice to the other. 1In an infinite
lattice, this would be an infinite
cluster.

It has been proven rigorously (1)
that in a lattice there is either zero,

one, or an infinite number of infinite
clusters. There are never two or

three, etc. infinite clusters. This
concentration p. (called the percolation
threshold) is the concentration at
which exactly one infinite cluster
exists.
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FIGURE 1
Clusters in a small
two-dimensional lattice.

To examine the diffusion in the
lattice, one allows the hypothetical ant
to "walk" randomly through the lattice.
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This means that the ant moves with
equal likelihood in all six directions.
The ant is allowed to walk a while and
then its displacement R(t) from the
place where it started to walk is
measured. One time-unit is the time
that the ant needs to walk from one
occupied site to the next (or to
attempt to walk in that direction if
there is no occupied site there).

To obtain statistical values for
R(t), a computer simulation was used. A
large number of ants are put into the
simulated lattice. They are allowed to
"walk" around and their average
displacement at various times measured.
The average of R2(t) is taken to
eliminate the vector character of the
displacement. It is the aim of the
investigation to describe the average
square displacement<R2?(t)>as a
function of time.

The data is analyzed by examining
graphs of <R2?(t)> as a function of the
concentration. Earlier studies (2)
have shown that the graphs take on three
different forms. For psp. the graph
asymptotically approaches a straight
line. For p = p. , it approximates the
shape of a parabola. For p < Pe » it
asymptotically approaches a constant

- Yy ¥ oaE v e o= 3007 4
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FIGURE 2
Root-mean-square of the
displacement versus time.

value (Figure 2). The asymptotic value

(R%,) would be reached when all the
ants have visited all sites in their
clusters with equal probability. The
aim of this research is to find the
function<R2(t)> for p < p. from the
computer data of Pandey ané Stauffer
(4).

METHODS
It has been assumed that the graph
Of<R?(t)>vs time converges
exponentially as do most random
time-dependent functions. Thus it
follows the equation:

<RZ(t) >= R~ fexp (t/a)

where m and a are variables.
Theoretical considerations indicate
that the time has an exponent x whose
value might not be equal to one. (3)
This is due to the fact that one does
not examine just one cluster, but takes
the average over all the clusters in
the lattice.

To check the correctness of this
equation and to obtain a value for x,
the equation is written in a different
form:

R2(t) = RZ - nexp(-t*/a¥)

percolation threshold p = 0.3117

Quality Range and Step Size
p=0.2317
b1 ) e o mals! ssssssssst=100 to t=4900 in steps of 100
1 T I . t=1000 to t=49000 in steps of 1000

p=0.2617 1 p=0.2717 : p=0.2817
Ll)swsnnnneiiunasves +s++t=100 to t=4900 in steps of 100
(l)esasninsisannesann t=1000 to t=49000 in steps of 1000
{3)eessvssnnssives t=10000 to t=240000 in steps of 10000

p=0.2917
Jesnasssssssnonnas +eest=100 to t=4900 in steps of 100
Jesasnasnsnnsnasnns t=1000 to t=49000 in steps of 1000
Jessssssnsssnssst=10000 to t=240000 in steps of 10000
Y aiae e a e t=100000 to t=900000 in steps of 100000

p=0.3017
Jenesmesssenissnniasna t=100 to t=4900 in steps of 100
Yewsransnanas esessat=1000 to t=49000 in steps of 1000
Yan s wndoneassn t=10000 to t=240000 in steps of 10000
leesesensnnss t=100000 to t=4900000 in steps of 100000

QUALITY OF THE DATA
LATTICE SIZE = 180 x 180 x 180

500 ants on each of 20 lattices
« 200 ants on each of 20 lattices

sssses 100 ants on each of 20 lattices
............. «+ 20 ants on each of 10 lattices
10 ants on each of 10 lattices

TABLE 1
Quality of the data used in
determining x. The larger the
lattice size, the number of ants,
and the number of lattices, the
better the quality of the data.

Thus
in( R, -<R*(t)>) = 1n (9) - t¥ /g%,
Making the substitution:

in(A) = 1n(RE —<RZ(t)>) ,
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yields the equation:

1n(A) = 1n(n) - tXa¥* .

If this equation is correct, the graph
of 1n(A) versus t should be a straight
line.

A qualitative discussion of the
data used is presented in Table 1. The
larger the lattice size, the number of
ants, and the number of lattices, the
better the quality of the data. The
limiting factor on the guality is the
computer time needed to generate the
data.

DISCUSSION OF RESULTS

A plot of 1n(A) versus t with a
concentration p=0.2917 produced a graph
which curved rather strongly. This
meant that the value of x was certainly
not 1. The plot of 1n(A) versus t was
done for a number of values of x until
two graphs resulted which were hardly
curved, one slightly convex and the
other slightly concave (Figure 3). The
value of the exponent then must be
between 0.47 and 0.45.

in &

FIGURE 3
Graphical determination of the
exponent x with p=0.2917.

The concentrations p = 0.2817 and
p = 0.2617 could not be analyzed in
this manner for convergance towards Reo
because the data from the simulation
for t=1000 ... t=49,000 converged
toward a value which was higher than R
as calculated using the data for
t=50,000 ... t=240,000. However, this
plotting method used with other
concentrations confirmed that x<l (see
Figure 4).

These graphs suggest that for
concentrations less than the percolation
threshold (p < pc), the values of the
average square displacement {R?(t))
converges towards Roe according to the
relationship:

<R%(t)>= Rgo—- nexp -(t/a)*

where x = 0.4+ .1.

0.6 -

[T 1

az b J
i | 1 1 i
.2317 217 2917 ,3017
P
FIGURE 4
Variations of x with various
concentrations.

APPLICATION OF THE PROBLEM

The hypothetical problem of an ant
walking through a cluster in a lattice
can be applied, for example, to
determine the electrical conductivity
of an alloy of two materials, one of
which is a metal and the other an
insulator. Electric charge will be
transferred from one side to the other
only when the concentration of the
conducting material (the metal) lies
above the percolation threshold p..
Hence one can see that percolation is
part of the field of critical
phenomena .

ACKNOWLEDGMENTS
The author wishes to thank Dr. D.
Stauffer who suggested this research
project, and to Dr. R. B. Pandey who
provided the computer data. Their ready
advice and support is appreciated.



VOLUME II, NUMBER 2 THE JOURNAL OF

UNDERGRADUATE RESEARCH

IN PHYSICS

PAGE 26

(1)

(2)

(3)

(4)

Dr.

REFERENCES
Newman, M. and Schulman, L. S.,
Journal of Physics A, 14, 1735,
(1981).

Mitescu, C. and Rousseng, J.,
Annals of the Israel Physics
Society, 5, 81, (1983).

Wilke, S., Gefen, Y., Ilkovic, V.,
Ahorany, A., and Stauffer, D.
preprint.

Pandey, R. B., Stauffer, D.,

Physical Review Letters, é}, 527,
(1983), and private communication.

FACULTY SPONSOR OF THIS PAPER

Dietrich Stauffer

Institute fur Theoretische Physik
Universitdt zu Koln

Zilpicher Strasse 77

5000 Kéln 41

West Germany




VOLUME II, NUMBER 2 THE JOURNAL OF UNDERGRADUATE RESEARCH IN PHYSICS PAGE 27

TEMPERATURE INDUCED VALENCE TRANSITIONS IN SmSq_.x Py ALLOYS*

K.D. Aylesworth, D.M. Howarth, and M.L.Wallner
Department of Physics and Astronomy
University of Wisconsin-Stevens Point
Stevens Point, WI 54481

ABSTRACT
erogenic lattice parameter measurements on a series of SmS,_ P, solid
solutions reveal the narrow range of composition parameter x in which
temperature induced valence transitions are observed. Evidence is presented
which suggests that a single temperature characterizes the onset of valence

change for alloys within this composition range. These results are compared
to the more widely studied Smy.,¥yS solid solutions.

INTRODUCTION

Transitions between phases of a
substance can be induced by applying an
external pressure. For example, an
applied pressure of 6.5 Kbar induces a
discontinuous transition in
samarium-sulfide from a black
semiconducting phase to a golden
metallic phase. During this
transition, the structure of the
material does not change, but there is
a decrease in the lattice parameter of
the face-centered-cubic lattice. (1)
For any cubic crystal, the lattice
parameter a is related to the crystal
plane spacing d by the eguation

a2 = (h? + k2 +12) a’?,

where (hkl) are the Miller indicies
that locate the plane in the crystal.
For a face-centered-cubic lattice, the
Miller indices can only have integer
values that are all even or all odd.

At first it was thought that this
was a simple electronic transition from
a cationic divalence to trivalence.
More recent measurements of the lattice
parameter and magnetic susceptibility
suggest that the golden metallic phase
material is characterized by a mixture
of valence states. The average value
of the valence is 2.8. This mixed
valent compound has novel electric,
magnetic and thermal properties.

Valence mixing in SmS also can be
induced by chemical alloying with other
rare-earth sulfides. Alloying with
samarium pnictides can also induce
transitions to intermediate valence

phases. As a result, alloys such as (Smy_x

Yy S) and (Sm Si.xPx ) have been investigated

in recent years (3-6). It is typical to
observe at the critical composition a
first order transition from a divalent
semiconducting phase to a mixed valent
metallic phase at some particular
temperature. As the temperature is
lowered, the mixed valent phase appears.
An interesting effect occurs at low
temperatures for the mixed valent alloys
near the critical composition. As the
temperature is reduced, the gold phase
crystals transform into a black powder
with a corresponding increase in the
lattice parameter. Upon warming up,

the gold phase is again recovered, but
at a slightly different temperature.
Thus there is an apparent hysteresis
effect when x is very close to the
critical composition.

Cryogenic lattice parameter
measurements on the Smy_Y,S system (4)
show that the temperature at which the
lattice parameter expands is dependent
upon the composition parameter x. For
example, Smg.g; Y019S expands without
hysteresis at 185K while Smg77Y(23S
expands at 160K. A similar effect
occurs in SmSy,Px alloys. The
comparison of these two alloy samples
is complicated by the fact that the
temperature of the transition has
hysteresis for x=0.06 (the critical
composition) has has no hysteresis for
x=0.08. It is therefore clear that if
one is to eliminate the complication of
hysteresis, one should investigate (SmSj
Py)alloys with a composition parameter
x larger than 0.08.

EXPERIMENTAL METHODS
Alloy samples of SmS;xPy with
x=0.08, x=0.10, and x=0.12 were obtained
from the University of Iowa. Sample
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preparation techniques can be found
elsewhere., (6)

Room temperature lattice
parameters of these samples were
obtained using a 114 mm Debye-Scherrer
powder diffraction camera using Cu Ka
radiation. A precision of +0.001 A was
made possible by a computer analysis of
nineteen pairs of diffraction lines
separated by angles 46 ( § is the angle
of incidence of the X-ray beam on the
crystal). Each pair of lines gave a
measurement of the crystal plane
spacing when used in the Bragg
equation:

2dsin(8) = \.

The lattice parameters deduced
from each pair of lines were fit by the
method of least squares to the function

1 (cosze + cosze

2 \sin o )

and an extrapolation to # = 90° was
used to give the most reliable result
(7).

The low temperature lattice
parameters were measured using an Air
Products mini-cryostat designed for
X-ray diffraction studies. Cooling was
achieved by using the Joule expansion
of compressed nitrogen gas. A
temperature stability of *2K was
typical.

The X-ray photographs taken with
this mini-cryostat contain many intense
diffraction lines that originate in the
beryllium shroud that surrounds the
sample and from the copper loaded
grease this was used to bind the sample
to the cold tip. These background
lines obscured many of the diffraction
lines coming from the sample in the
back reflection region. Because of this
interference, it was necessary to limit
measurements to the hkl = (442) line
for each temperature.

Under these conditions, the random
errors resulted in an uncertainty in
the lattice parameter of *0.002 A.
The systematic errors are larger than
this number. Therefore each low
temperature measurement was adjusted for
relative comparison with the more
precise room-temperature lattice
parameter measurement.

RESULTS
The room-temperature lattice
parameters obtained with the
Debye-Scherrer camera are listed in
Table I for the three alloy samples

under investigation. These lattice
parameters all agreed with those
obtained by Henry, et. al. (6)

An estimate of the average
samarium valence in these anion
substituted alloys can be made by
assuming a simple mixing of Sm2*, sSm3*,
S2=, and P3~. The equation:

v(ix) =2 + x + (T*xJa(Sm2+S) + xa(SmP) - a(x)

a(Sm2+S) - a(Sm3+S}

gives the room temperature valence v(x)
for alloys of composition x and a(x) is
the lattice parameter for the alloy.
The lattice parameters for the known
valence compounds are:

a(sSm2*s) = 5,97 A
a(Sm3+s) = 5.62 A
a(Sm P) = 5.77 A .

The lattice parameter for the trivalent
samarium sulfide was determined by an
interpolation of the lattice parameters
of the neighboring trivalent rare-earth
sulfides (9). One can see from Table 1
that each alloy exhibits a considerable
degree of valence mixing at room
temperature.

SmS‘dP‘ Room Temperature Estimated

Sample Lattice Parameter Valence

x = 0,08 5.697 & 2.81
%= 0.10 5.695 & 2.83
x = 0.12 5,602 K 2.85

TABLE I
Results of the diffraction
measurements taken with the
Debye-Scherrer powder diffraction
camera. The valence estimates
come from equation (4).

The results of cryogenic lattice
parameter measurements of the two alloy
samples are shown in Figure 1. The
data for the SmSpgoPpg sample fit a
curve that decreases with cooling to
185 K and then rises sharply through
the lowest temperature obtainable with
this apparatus. The initial decrease
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in the crystal dimension is expected
with cooling. The subsequent increase
in the crystal dimension indicates a
transition to a lower average samarium
valence. This behavior is consistent
with previously reported measurements
(6). The SmSg.goPp.10 alloy is found to
undergo a nearly identical transition
at 185 K as well. Larger random errors
are evident in the cryogenic lattice
parameters of this alloy because of
difficulty encountered in centering the
sample in the X-ray beam. The (442)
line in this case appeared fainter than
the corresponding line for the x=0.08
alloy. Within experimental
uncertainty, low temperature lattice
parameter measurements of Sm SgggPp 12
failed to demonstrate any change in the
average samarium valence down to 100K.

CONCLUSIONS

Results of the measurements on the
x=0.12 alloy suggest that the
composition interval over which
temperature induced valence transitions
are observed for Sm Si_,Px (x=0.06 to
0.12) is guite narrow when compared with
other mixed valent alloy systems.
Henry, et.al. had previously shown that
this type of valence transition was
undetectable for x=0.20. Our results
have narrowed the composition interval
considerably.

The observation that a single
temperature characterizes the onset of
valence transitions in the SmSg gyPpg
and SmSgpP10 alloys distinguishes SmS, P,
from Smy_, ¥,S. This difference may
orlglnate from the fact that yttrium
substitution alters the cationic
symmetry of mixed valent samarium while
phosphorus substitution does not.
Alterations in the local environment
then would be much more pronounced in
cation substituted systems.

The limited composition range
available for investigation of this
phenomenon in the SmS;_y Py system makes
it difficult to firmly conclude that
the transition temperature is indeed
constant. It appears desirable at this
point to investigate other anion
substituted systems such as SmS;_, Asy .
These may exhibit a broader composition
range for temperature induced valence
transitions.
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OPTICAL LEVITATION

Donn Michael Silberman *
Physics Department
University of Arizona
Tuscon, AZ 53233

ABSTRACT
Micron-sized drops of glycerol have been trapped and accelerated in a
stable optical potential well provided by a focused beam from a continuous
laser. The theory of how this works is presented in detail. An experiment is
described that verifies the theory.

INTRODUCTION The force of gravity acting on the
The trapping and acceleration of sphere is:
micron-sized particles using the beam of Fg = mg = 4/3 rr3pqg ,
a continuous laser was first reported
by A. Ashkin (1) in 1970. Since that where r is the radius of the sphere, p
time, a number of papers have appeared the density of the spherical oil drop,
on the subject. and g the acceleration due to gravity.

The experiment described in this
paper is similar to the Millikan 0il
Drop experiment. In this case, instead
of using an electric field to levitate
an electrically charged drop as
Millikan did, a radiation field,
produced by a laser, is used to
levitate an electrically neutral drop.
This paper presents the theory of why a
radiation field can be used to levitate
a neutral drop and gives the details of
an experiment that verifies it. This
experiment is easily done where ever a
100 milliwatt laser is available.

¥
Z(Gl-sl} " tranamitted ray

THEORETICAL DEVELOPMENT

The geometry of the problem is
shown in the ray diagram (Figure 1).
The light ray is traveling normal to
the earth's surface and is incident on a
sphere that is partially transparent to
that ray. The reflected and
transmitted rays are shown. If the
indicies of refraction aflected ray

m

n(s} > n(m) incident ray
are known, the laws of reflection and
refraction at the boundaries can be FIGURE 1
used to find the force imparted to the Ray diagram of the laser light as
sphere by the incident light. This it passes through a spherical
force (Frp ), which is due to the drop. The photons travel along
radiation pressure, must be greater or the rays.

equal to the force of gravity (Fg) plus
any viscous forces (Fy ) acting on the
sphere in order to trap or accelerate
the sphere.
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The viscous force acting will take on
the form of Stokes Law:

Fy =-6rrnv,

where 7 is the viscosity of the medium
through which the drop is falling,_and
Vv is the velocity of the sphere. Fy
is equal to the sum of the vertical

components of the forces due to the

B =

Ay & ray b

of beam

Intensity

FIGURE 2
Momentum diagram of the light
traveling through the drop. The
drop is off the center line of the
Gaussian distribution of the light
intensity of the TEMnode of the
Argon laser.

reflected and transmitted photons (the
photon paths are represented by the
rays).

These forces are shown in Figure 2
as change-in-momentum vectors. The two
rays "a" and "b" are incident on a
sphere that is off the center axis of

the Gaussian distribution of the light
intensity of the TEMgQ mode of the
laser. The net effect is that the
hemisphere closer to the beam axis
receives a horizontal force toward the
beam center, while the other hemisphere
receives a positive vertical force.
Since the beam intensity (number of
incident photons/area/time) decreases
with distance away from the beam axis,
the net horizontal force is always
acting towards the beam center. This
means that the drops will track along
the beam axis.

FIGURE 3
Vector momentum diagram for the
laser light passing though the
drop. These diagrams are used to
find the z component of the force
due to the radiation pressure.

Summing the z component of the
forces due to the reflected photons (F;;)
and those due to the transmitted
photons (F;,) over the bottom half of the
sphere gives: 6

'is-rp =F}rZ+FrZ =N [{1 . q%A_Ptzl cos6.dg
2
+ q/IAPr,_Icosa-, dﬁ]
(]

where N is the number of
photons/area/time, g is the reflectance
of the sphere, 0;is the angle that the
incident photon makes with the normal
to the surface of the sphere n, and dg
is the surface element. The incident
momentum is given by:

P; =(hv/c)z
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where h is Planck's constant, vthe

frequency, and c the speed of light.
Using the ray diagram (Figure 1) and
the vector diagram (Figure 3), the z

Transmitted Reflected

Bpy = 7 - P AP, = P, = P;

to find z-component to find z-component

iA_P,__| = |£-‘;‘l sinlg, - 8;) l;’.rgl = |Fr| cos 8,

laz,] = 2 17| sinte - 8;) |75 = 2|F)cos 8

|37, = 2|7 |sin (o, - 8) 1_5?,1| = 2|7 coss,

component of the radiation pressure
force becomes:

— 2
Fio=iN Uganrz[a-qysirﬁei- 6;) sin6,cos 6, do,
2 0

+Ci[cosasi dei]

o]

Snell's Law gives:

8! = arcsin[ n(medium)/n(sphere)sing;]
The value of the reflectance can

be measured by placing the oil in a

glass container and shining the laser

on it. The ratio of the power reflected

to the power incident is the value of

e Using our measured value of g, the

value of the quantity in brackets in

equation 2 becomes 0.116.

The force due to the radiation
pressure can be written as:

Fry,  ={N (nw/c) 4mr20} 2
where Q is the value of the integrals
in the square brackets. It should be
noted that the effect of the internally
reflected rays at the exiting boundary
at the top of the drop are ignored.
Their effect on the result is small.

If the beam has a cross-sectional
area =rw? (which changes with the
height because the beam is focused),
the force can be written as:

Fio =4PQr2/cw? z = k/w?z

where w is the radius of the beam and P
is the total power in the incident
beam.

In the region far below the focus
waist (see Figure 4) at z=-2L, the
velocity of the sphere is 0, so
Newton's law tells us that the net
force is zero. This means that

which becomes:
4PQr?/cw? =4/37r% pg

Hence the radius of the sphere that
would be trapped is given by:

r = 3PQ/(cw?nrpg)

w in microns center
of
17 48.5 20 beam

952 T T

000 B~ e

Z in microns

~478 - -

-952 1 1
A5 4.2 7.9

Z=-2L

107 wate/ p?

FIGURE 4
The geometry of the beam that was
used to levitate the o0il drops.
The figure on the left is the
power profile. The right figure
is the spatial profile.

If the sphere obtains a small
upward velocity, it will accelerate
until it reaches z = -L/2 where
terminal velocity is reached in
accordance with Stoke's Law. To
calculate the terminal velocity, one
must remember that as the drop moves
upward, the power/area changes. The
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size of the beam is given by:
wp= Sz + w
where s is the slope of the diverging

beam (see figure 4), and w the radius
of the focus at the waist (z=0). The

spatial filter

laner

Argon

=~ pPower meter
A<
irror

( :a focusing lens
levitation cell

-

video
camera

FIGURE 5
Experimental set-up for the
optical levitation experiment.

velocity can be found using the energy
balance integrals shown below. The
energy put into the drop either goes
into kinetic energy or gravitational
energy.

L/2 L/2 L/2
k dz = |a vz) dz + | mg dz
= g
0Esz+wp)! o )
0

where a is the coefficient in Stoke's
Law.

The average velocity of the
spheres in the central part of the
focused beam (which can be measured) is
given by: L/2

<v>= (1/L) v(z) dz

Performing these integrals gives
the result:

2
__8PaQr 1 1 4anr3g p
LS Lca [s = ] B 3a

%}—wﬂ Swp

Everything in this equation is
measurable. The aim of the experiment
is to verify this result.

THE EXPERIMENT

A focused continuous laser beam
(100 milliwatts power) is directed
vertically into a glass cell in which
glycerol drops may be sprayed from
above. A properly calibrated viewing
microscope is aligned horizontally to
inspect the drops as they are trapped
and accelerated near the focus of the
beam. In the experiment reported here,
the data were taken using a
video-recorder as shown in Figure 5.
Using the recorder allowed the data to
be analyzed at leisure at a later time.
A Helium-Neon laser was used to
illuminate the calibration scale of the
viewing microscope. This laser was
used because its red color contrasted
well with the blue light of the Argon
laser used to levitate and illuminate
the spheres. The brilliant scatter of
the laser light off the drops can be
seen easily by the unaided eye. The
geometry of the beam (the slope s in
equation 7) was measured by introducing
smoke or water into the cell. The
laser power was measured by the use of
a power meter placed over the cell.

The average velocity was
determined by measuring the time for
the drop to move a distance of 476
microns. A total of 66 drops were
tracked. The value of the slope of our
beam was (6.0%.5)x10°3 The details of
the laser beam profile are shown in
Figure 4. Using oil of density (1256%
5)kg/m and reflectance g= 0.10%+.01 and
a 100 milliwatt laser determined that
the radii of the trapped drops were
r=50 *.05 microns. Together these gave
a predicted average velocity of

<v> (theory) = (3.0£8)x10 *m/sec

This compares quite favorably with the
measured value of:

<Vv> (experimental) = (3.1+.4)x10 M/sec.

CONCLUSION
The results obtained in this
experiment support the theory developed
as the experimentally measured velocity
overlaps the theoretical value. The
forces due to the focused laser light
can trap and accelerate micron-sized
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electrically neutral semi-transparent
particles. The only special piece of
equipment needed to do this experiment
is the 100 milliwatt laser. The rest
of the material is commonly available
in the advanced undergraduate
laboratory.
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LAPLACE'S EQUATION, MICROCOMPUTERS, AND THE CLASSROOM

Jeanne A, Jackson
Department of Physics and Astronomy
Appalachian State University
Boone, NC 28608

ABSTRACT
Finding the solution to differential equations such as LaPlace's equation
gives a teacher a good opportunity to familiarize students with one way in
which computers are used in physics. Micro-computers are an excellent tool
for this undertaking. One does not need a larger main-frame computer. This
paper will present the Jacobi and alternating-direction-implicit methods for
solving Laplace's equation. These methods will be compared in terms of

accuracy, speed, and storage space requirements.

INTRODUCTION
LaPlace's equation,
V3¢ =0

occurs frequently in physics. In
thermodynamics, the function ¢ gives
the steady-state temperature
distribution over a region. In fluid
dynamics, it is the "velocity
potential" of laminar, irrotational
flow of an incompressible fluid, while
in electromagnetism, ¢ is the electric
potential in a region of space.
Analytical solutions of LaPlace's
equation are possible in some
situations. If it is not possible to
obtain the boundary conditions or the
geometry of the region as some closed
mathematical function, analytical
solutions are very difficult or
impossible. In such cases, one must
look to numerical methods to solve the
equation.

A number of methods for solving
LaPlace's eguation are best suited for
use on large main-frame computers. The
advent of the home computer has given
rise to interest in methods that can
work on systems that are slower and have
less memory. These sort of limitations
render some of the numerical methods
unsuitable for use on the small
computer.

Two different methods of
numerically solving LaPlace's equation
will be examined in this paper.
Attention is given to the following
characteristics: a) the accuracy of the
method, b) the amount of memory needed

to store and run the program, and c)
the time it takes the process to reach
a desired level of accuracy. The
methods were written and run on a
Commodore PET 4016 micro-computer with
15,359 words of memory available.

The two methods under
consideration are Jacobi's method and
the so-called
alternating-direction-implicit (ADI)
method.(1,2) Before comparing how they
work, it may be beneficial to review
the theory upon which the methods are
based.

THEORETICAL BACKGROUND

Jacobi's method

The finite difference eguation
upon which Jacobi's method is based
comes from a Taylor expansion of the
function. The region in which the
solution is desired is divided into a
regular grid with Ax = Ay = h. (Figure
1) The Taylor expansion of the
function ¥(x,y) about the points (x#
h,yth) gives:

2
L ) —phd¥ 4+ 2 3¥
Plx—h.y) Plxy hax + 7 32
_ 3¢ . h? d%¥
Plx+hy) = Plxyl+ hs;'*1? T *
so i ite 0(h?)
e - o
@lx y-h) Ylxy) hi_a; + 37
2
= oley) dp + h2 3" ¥
Ylx.y+hi Pixyl+ hg{ 7 9y?
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When the four terms are added together,
the first derivative terms cancel out,
resulting in the equation:

2 2 1
g—xg + g—ﬁ = h—2[4-p{_x.y} - Plx+h.y)
— ¢lx-hy) = @lxy+h) - v{x.v—h}]+0l_h’)

where 0O(h?) means that as h becomes
small, the error is proportional to h2.

TN

o -

* h >

>l

Figure 1
Grid mesh used to set up finite
difference equations for the
solution to LaPlace's equation.

LaPlace's equation then says that
the left side of the equation must
equal zero. This then results in the
finite difference eguation:

1
V(xy )=ZIEP{X+h‘y}+‘P[_"'h.Y}“'P{*-Y*h_] +\°[x.v-h]]

which allows one to calculate the
solution to LaPlace's eguation at the
point (x,y) if you know the values at
the neighboring points. If each of the
squares in Figure 1 is labeled by an
integer, this algorithm for solving
LaPlace's equation can be written as:

0(ij)=1/4 [P, D)+ 9Ci-1)+PLLi+ 1) + G j-1)] (1)
where 1 and j are integers.

The ADI method

To find the finite difference
equations on which the ADI method is
based, one again divides the region in
the manner of Figure 1. Now one
assumes that the function ¥ depends
upon position and time and actually
solves a diffusion equation:

% o R

The function ¥Y(x,y.,t) is expanded
using a Taylor series about the points
(x+h,y*h,t+At) and a finite
difference solution for p(x,y,t+At] is
found. The expansions to order h?are:

2 z
P(x.y+h,t)= lp-rh%.‘f ..._*.‘. a_:.

2y
hi)= @-hd¥ 402 3%
\Q(X,Y h,t) (4 hw + > ayz

2 a2 nltsy
P(x+hytsAt)= P+ H%EM! ,% ax\o(t an

h2 32p(t+At)
s A = w(t+A _—_ T a8
P(x-hytean= ¥ - h 22ULAD L o &5

There are three parameters that can be
varied: x position, y position, and
time. We first choose to move in the y
direction at time t and then the x
direction at time t + At. Adding
together the terms for this yields:

2%y , 32p(t+Ah
ay? a2

29 + hz[ ] +2@(t+At)

Notice that once again, the first
derivative terms vanish. A
rearrangement of these terms gives:

%p |, d2p(t+Al) _
ay2 0x2

JrThEN -2@(t+At) +@(x,y+h t) + 9(xy-h.t)

+@(x+h yt+At) + w(x-h,v.HAI)]

Since Poisson's equation holds for this
system, the expression on the left is
equal to the partial derivative with
respect to time. The Taylor expansion
for the partial derivative with respect
to time is:

::’ [w(tﬂst) *wtt)J—t + 0(At)
Keeping terms of order At results in

the following relationship:

Plxy t+Atl) =-'; [w(x‘y+h_t) -2¢(xy 1)+ w(xy-ht)
+9(x+h y t+A1) - 20 (XY t+At) + w{X-h.v_nAt)]

where p is an iteration parameter
whose value is:

p = h%au

Now we step in the x direction at
time t + At and the y direction at time




The iteration parameter can be chosen
to minimize the computing time.

WRITING THE PROGRAM
Jacobi's method
The finite difference equation 1
is used in a program in the following
manner :

1. Define the geometry of the region
of interest.

A Define ‘the boundary conditions

3. Compute the value of ¢ at all
points within the boundary. One
must know the values at every
point on the boundary.

4. Check to see if the desired
accuracy has been reached.

5a Repeat steps 3 and 4 until the
desired accuracy is obtained.

As the outline indicates, the
Jacobli method is quite simple to
program. If there are any difficulties,
they will be encountered in steps 1 and
2. There one establishes two
two-dimensional arrays to hold the
values of Y. These arrays contain the
values of the boundary conditions and
are used to store the old values and to
calculate the new values. The accuracy
is determined by comparing the two
arrays to see if the values changed.

2% Compute

B = bi-(aici)/ﬁi_1 ﬁ1= b1/a1

and

7| =(di-ai?i_1}/ﬂi 71=d1/b1
3% Then calculate

vi= 7-(ci¥i41)/B; Yr="g

4. Go on to the next i until you
reach the end.

5. If you haven't reached the desired
accuracy, repeat steps 2, 3, and
4.

Listing of BASIC programs written
for these two methods to work on the
Commodore PET 4016 can be obtained by
writing the Physics Department.

COMPARISON OF TECHNIQUES

The best way to evaluate numerical
methods is to compare their performance
on a problem. The problem used is
outlined below. A rectangular plate
has temperature 0 at all points on its
surface. A heat source is applied to
the plate that keeps the temperature
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t + 24t. This process yields another The ADI method
equation for ¢(x,y,t+At): The ADI method involves two
equations for each time step. As the
name implies, the equations are first
_1 implicit in one direction (x) and then
plxy.teat) = pEw{&%t+242)+2w0my+mt+2At) in the other (y). This is contrasted
with the Jacobi method where the finite
+9(xy-h1+2A1) +@(x-hyt+At) - 29 (XY.t+At) difference equation is implicit in both
directions.
+\p{x+h'y‘t+61)]
Applying Equation 2 to a problem
) results in a set of i equations for i
The two equations for e¢(x,y,t+A4t) unknowns. If represented in matrix
must be simultaneously true if LaPlace's form, they form a tridiagonal matrix.
equation is to be true. Once again, if Such sets of equations can be solved
the squares in the region of interest using the Thomas algorithm. (2)
are labeled by integers, this finite Programming the Thomas algorithm is no
difference equation results in two easy matter. First, one rearranges the
equations: finite difference equations (Equation
2) so the terms in ¥Mandy¢"t!are on
opposite sides of the equations. Then
1 n 10 nH n+1 n+ one calculates a set of intermediate
Pij =¢ii+§[wi+lj -2%i) 4+ Pi-1j values a, b, ¢, d, fand Y . These
n n n values then can be put into an
+vij-1 - 2¢ij + ¢u+1] (2) algorithm that will compute ¥ . The
- =t y el o calgulatlons are ;epeated until the
i L | L5 aa desired accuracy is reached. The
Pij =91 tgleirlj - 2900 + idj algorithm is as follows:
n+2 n+2  n42 )
+vij-1 -20ij + eij+ 1. Put the finite difference
equations in the form
i1+ biPi+Civiyy =di  1SISR  a;=cg=0
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along each edge constant. The
steady-state temperature distribution
on the surface is given by LaPlace's
equation. The answer to the problem is
obvious, so the accuracy can be
checked. The surface is divided into a
10 x 10 grid.

Accuracy

Both systems shown here are
second-order correct. Therefore, the
relative accuracy of the two methods is
not a determining factor in the
decision of which one to use.

Speed

The Thomas algorithm (used in the
ADI method) calculates only one value
of ¢ per iteration for each grid point.
Each of these calculations involves the
determination of three intermediate
quantities. The computer must do four
calculations per grid point per
iteration. Jacobi's method, on the
other hand, requires the averaging of
the values of ¢ at the surrounding
points in order to calculate ¢ at one
point during one iteration. This will
be at least two or more calculations.
Thus the determining factor as far as
the speed is concerned will be the
number of iterations needed to reach
the desired level of accuracy.

When applied to this problem, the
Thomas algorithm ran much faster than
the Jacobi method. It reached two
decimal place accuracy is less than one
minute, while the takes over 11 minutes
to achieve that level of accuracy in
just 69 of the 100 points when the
Jacobi method is used.

Space Used

The Jacobi method has the space
advantage over the Thomas algorithm.
The latter requires 4 arrays to store
the values of ¢ and the intermediate
variables, while the Jacobi method only
requires two. In this example, the
Thomas method required 3567 words of
memory while the Jacobi method required
only 2890 words.

Other Comparisons
The Jacobi method can be used to

model time dependent processes. This is

particularly effective if the output is
formatted to correspond to the shape of
the region in question. If one outputs
the values of each iteration, the
resulting propagation of values through
the arrays will "mimic" a time
dependent (diffusive) process.

The Jacobi method can be
programmed to take advantage of the
symmetry of a problem, perhaps reducing
the number of calculations and hence
the run time. This is impossible when
one uses the Thomas algorithm.
However, the speed of the Thomas
algorithm is so great that any gain in
efficiency due to symmetry probably
would not make the Jacobi method more
attractive from this standpoint.

CONCLUSIONS

Jacobi's method and the ADI method
both successfully solve LaPlace's
equation. Each method has intrinsic
advantages and disadvantages. The ADI
method runs faster by virtue of the
Thomas algorithm, but this advantage may
be somewhat offset by the larger amount
of space it requires. Jacobi's method
is much more conserving of space at the
expense of time.
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