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A Letter from the SPS President
by Alina Gearba-Sell, US Air Force Academy (USAFA)

The Society of Physics Students is a 
professional organization “that exists 
to help students transform themselves 
into contributing members of the 
professional community.” At the core 
of its mission stands the firm belief 
that involvement in a research project 
cultivates a distinct set of skills that 
will enhance an undergraduate’s 
experience and better prepare them for 
the challenges that they will encounter 
in their professional careers.

According to the Council of 
Undergraduate Research, undergraduate 
research refers to “an inquiry or investigation 

conducted by an undergraduate student 
that makes an original intellectual or 
creative contribution to the discipline,” and 
the benefits of undergraduate research are 
far-reaching.

As such, SPS has developed a variety 
of programs and initiatives designed to 
take an undergraduate through the entire 
research process, from the formulation 
of a problem, to the development of the 
solution, and through to the dissemination 
of the results.

The SPS Chapter Research Award 
provides research grants to support 
chapter research projects led by 
undergraduates under the supervision of 
a faculty mentor. This program is designed 
to develop critical thinking and problem-
solving skills, teamwork, as well as oral 
and written communication skills.  In 
addition, it could serve as a foundation 
for how to address complex problems 
in the future, whether in graduate school 
or the workforce. A successful proposal 
requires undergraduates to present a 
clear statement of the problem and its 
significance, perform a thorough literature 
search, lay out a well-thought-out plan for 
conducting the proposed research with 
milestones set along the way, and prepare 
a research budget. Performing the actual 
research will instill a sense of ownership 
in undergraduates, while enhancing their 
leadership and project management skills 
at the same time. Communicating with 
the research mentor on a regular basis will 
bolster confidence in their ability to bring 
the project to completion and demonstrate 

the benefits of networking and collaborative 
research. Submitting a final report at the 
conclusion of the project will provide an 
opportunity to reflect on the research 
accomplishments and contemplate future 
avenues to be pursued, while emphasizing 
the importance of belonging to a 
professional community.

The SPS Award for Outstanding 
Undergraduate Research recognizes 
individual undergraduates who made 
significant research contributions to 
any physics-related field.  SPS provides 
additional opportunities in travel and 
reporter awards for undergraduates to 
present their research at professional 
conferences and connect with the 
community. SPS also offers a summer 
internship program in research, education 
and policy with emphasis in building a 
strong community.

The Journal of Undergraduate Reports 
in Physics (JURP) provides a forum for 
undergraduates to disseminate their 
research outcomes in a peer-reviewed 
journal designed to highlight undergraduate 
work. Supported and hosted by AIP 
Publishing, AIP Publishing.

We hope this summer will be a great 
one, you will have the opportunity to 
participate in a research internship and next 
academic year you will engage in a face-to-
face research project with a faculty member. 
We also hope you will consider publishing 
your research findings or chapter projects 
in JURP, take advantage of the multitude of 
opportunities SPS has to offer and engage 
with the professional community. //

ABOVE: Alina Gearba-Sell 
Photo courtesy of SPS National Office.

Sigma Pi Sigma (ΣΠΣ), the national physics honor society, 
was founded in 1921 by students at Davidson College. 
It exists to honor outstanding scholarship in physics, to 
encourage interest in physics among students at all levels, 
to promote an attitude of service, and to provide fellowship 
for those excelling in physics. While its “linked but distinct” 
counterpart, the Society of Physics Students (SPS), is an 
organization that helps students transform themselves into 
contributing members of the professional community, Sigma 
Pi Sigma serves to provide a lifelong framework through 
which to advance its mission and provide opportunities to 
support future physicists.

The American Institute of Physics (AIP) generously 
underwrites Sigma Pi Sigma programs, including awards 
for chapter projects, outstanding service, and lifelong 
commitment to the organization’s objectives of SPS and 
ΣΠΣ. Sigma Pi Sigma also hosts the Physics Congress, 
or PhysCon, an inclusive conference for undergraduate 
physics students. We are looking forward with great 
excitement to the upcoming Physics Congress in 
Washington, DC, and will mark the centennial celebration 
of the founding of ΣΠΣ!

www.sigmapisigma.org/congress/2022
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Generalized   Null   Lagrangians   for   Equations   with   Special   
Function   Solutions   

Atharva   A.   Dange, 1,   a)    Lesley   C.   Vestal, 1,   b)    and    Zdzislaw   E.   Musielak 1,   c)   

1    Department   of   Physics,   University   of   Texas   at   Arlington,   Arlington,   TX   76019,   USA     
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Abstract.  A  method  to  derive  general  standard  and  null  Lagrangians  for  second-order  differential  equations  whose                 
solutions  are  special  function  of  mathematical  physics  is  presented.  The  general  null  Lagrangians  are  used  to  find  the                    
corresponding  general  gauge  functions.  All  derived  Lagrangians  are  new  and  in  special  cases  they  reduce  to  those                  
published  in  the  literature.  The  obtained  results  are  applied  to  the  Bessel,  Hermite  and  Legendre  equations,  which  have                    
many   applications   in   physics,   applied   mathematics   and   engineering.     

INTRODUCTION   

Second-order  ordinary  differential  equations  (ODEs),  whose  solutions  are  given  in  terms  of special  functions               
(SFs)  of  mathematical  physics  [1,2],  have  many  important  applications  in  physics  and  applied  mathematics  as                 
shown  in  standard  textbooks  (e.g.,  [3]).   For  several  of  these  ODEs,  Lagrangians  were  previously  constructed  [4-6].                  
More  recently,  the  standard  and  non-standard  Lagrangians  for  the  ODEs  with  the  SF  solutions  were  derived  [7].   In                    
this  paper,  a  method  is  developed  to  derive  the  general  standard  Lagrangians  (SLs)  as  well  as  the  so-called  general                     
null  Lagrangians  (NLs),  which  identically  satisfy  the  Euler-Lagrange  (E-L)  equation  and  can  also  be  expressed  as                  
the  total  derivative  of  a  scalar  function,  also  called  a  gauge  function  [8].  The  SLs  depend  on  the  square  of  the  first                        
derivative  of  the  dependent  variable  (kinetic  energy-like  term)  and  the  square  of  the  dependent  variable  (potential                  
energy-like  term).  The  NLs  were  studied  in  mathematics  [9,10]  and  have  also  applied  to  elasticity  [11],  and                   
Newtonian  mechanics  where  they  were  used  to  introduce  forces  [12].  However,  the  role  of  the  NLs  in  ODEs  with                     
the  SF  solutions  has  not  yet  been  fully  explored;  doing  so  is  the  main  aim  of  this  paper.   Our  choice  to  focus  on  these                          
ODEs  is  justified  by  their  many  physical  applications  familiar  to  graduate  and  undergraduate  science  students.  Our                 
results  are  applied  to  the  Bessel,  Hermite  and  Legendre  equations  as  these  specific  SFs  are  used  in  many  physical                     
applications.  Therefore,  the  presented  results  should  be  of  interest  to  physicists,  applied  mathematicians  and                
engineers.   

GENERAL   STANDARD   AND   NULL   LAGRANGIANS   

Generalization   

Let   be  a  linear  operator  whose  coefficients   B(x)   and   C  (x)   are  ordinary  and   dx dx  D̂ = d2/ 2 + B (x) d/ + C (x)               
smooth   functions.  If   acts  on   y(x),   which  is   also  ordinary  and  smooth,  then  the  resulting  ODE  can  be  written   C )( ∞    D̂                  
in   the   following   explicit   form     

" B(x)y  C(x)y .  y +  ′ +  = 0 (1)   
  

Dange
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Dange

By  specifying  the  coefficients   B(x)   and   C  (x),   all  ODEs  with  the  SF  solutions  are  obtained  and  for  these                     
equations  we  derive  the  SLs  and  NLs.  Let  L n  be  a  null  Lagrangian  and  L s  be  a  standard  Lagrangian  that  is  used  to                         
derive  an  ODE  with  the  SF  solutions.  The  NLs  described  above  imply  that  the  total  Lagrangian  L tot  given  by  L tot  =  L s                        
+  L n  leads  to  the  same  ODE  as  using  L s   only.  In  other  words,  the  addition  of  L n   does  not  change  the  outcome  when                          
the  E-L  is  applied.  In  this  paper,  we  develop  a  general  method  to  drive  the  standard  Lagrangians  together  with  a                      
new   family   of   NLs   that   are   used   to   find   the   corresponding   gauge   functions.     

The   starting   point   of   this   method   is   to   consider   the   general   Lagrangian:     
  

f f y fL (y , )′ y (x) , x = 2
1

1 (x) y 2′ + 2
1

2 (x) y ′ + 2
1

3 (x) y2 (2)   
  

where  ,  ,  and   are  ordinary  and  smooth  functions  to  be  determined.  This  Lagrangian  depends  on   f 1 (x)  f 2 (x)   f 3 (x)              
the  square  of  the  first  derivative  of  the  dependent  variable  (kinetic  energy-like  term),  the  square  of  the  dependent                    
variable  (potential  energy-like  term)  and  on  the  mixed  term  with  the  dependent  variable  and  its  derivative.                  
Substituting   the   above   Lagrangian   into   the   E-L   equation,   we   obtain:     

.  y′′ + ( f1

f ′1 ) y′ + 1
f1

f(2
1 ′

2 − f 3) y = 0 (3)   
  

Comparing  (1)  and  (3)  we  get   and  ,  which  gives  and        B (x) = f1

f ′1    C (x) = 1
f1

f(2
1 ′

2 − f 3)    e Ef 1 = c1
(x)dx∫

 

 
B

= c1 s   

,  where   is  the  integration  constant  and  .  Substituting   f ff 3 = 2
1 ′

2 − C (x) · f 1 = 2
1 ′

2 − C (x) · (c E )1 s   c1       Es = e
(x)dx∫

 

 
B

  (x)f 1  
and     into   we   find:  (x)f 3 L (y , , )′ y x ,   

L (y , , )′ y x = Ls (y , , )′ y x + Ln (y , , )′ y x (4)   
  

where   
         L c E   s (y , , )′ y x = 2

1
1 s (x) y[ 2′ (x) − C (x) y2 (x)] (5)   

  
and     

            L y   n (y , x)′ y′ = 2
1 (x) f[ 2 (x) y′ (x) + f2

1 ′
2 (x) y (x)] (6)   

  
with   being  a  combination  of  the  general  standard  Lagrangian  and  the  general  null   L (y , , )′ y x           Ls (y , , )′ y x      
Lagrangian  .  It  must  be  noted  that  generalizes  the  Caldirola-Kanai  (CK)  Lagrangian    Ln (y , , )′ y x        Ls (y , , )′ y x       
[13,14]  and  it  reduces  to  the  CK  Lagrangian  when   and   this  SL  also  describes  a           onst.B (x) = b = c   onst;C (x) = c = c       
harmonic   oscillator   with   time   dependent   mass   and   spring   constant.   

General   Gauge   Functions   

Having   obtained   the   general   null   Lagrangian,   we   now   derive   its   general   gauge   function     using:   ϕ  

f (x)y (x) f (x)y(x)y (x)  ∣  ∣ (x).Lnull = 4
1 ′

2
2 + 2

1
2

′ = dx
dϕ = ∂x

∂ϕ
y=c + ∂y

∂ϕ
x=c · y′ (7)   

  
Which   gives,   

f  ϕ = 4
1

2 (x) y2 (x) . (8)   
  

With    f 2    (x)    being   arbitrary,   the   following   three   cases   may   be   considered:   

i)                 →L                                 f 2 = 0 S = LS,min (trivial case)  
ii)  onstant →L  f 2 = c mid = LS,mid + Ln,mid  

iii)                →Lf 2 = f ′1 max = LS,max + Ln,max  
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Substituting   each   of   the   cases   in   our   gauge   equation   (8),   we   get   our   three-gauge   functions   respectively:   

i)  f                                                            No gauge function  ϕ = 4
1

2 (x) y2 (x) = 0  
ii)  f y                   V ariable gauge functionϕ = 4

1
2 (x) y2 (x) = 4

1 · c · y2 (x) = c2
2 (x)   

iii)  c (x)                            Max variable gauge function           ϕ = ϕmax = 4
1

1 · Es (x) · B (x) · y2  

APPLICATIONS     

Applications   of   our   results   to   selected   ODEs   with   the   SF   solutions   are   summarized   in   the   following   table.   

                                                               TABLE   1.   

  
By   selecting     and     different   (regular,   modified,   spherical   and   spherical   modified)   Bessel   equations   are   obtained.  α , β γ  

CONCLUSION   

We  considered  the  linear  second-order  ODEs  whose  solutions  are  given  by  the  SF  of  mathematical  physics,  and                   
derived  general  standard  and  null  Lagrangians.  The  obtained  Lagrangians  are  new  and  they  generalize  those                 
previously  found.  The  derived  gauge  functions  are  also  new.  The  obtained  results  are  applied  to  the  Bessel,  Hermite                    
and  Legendre  equations,  thus,  they  are  of  primary  interests  to  physicists  and  applied  mathematicians.  The                 
presented   results   can   be   easily   applied   to   any   ODE   with   the   SF   solutions.   
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Substituting   each   of   the   cases   in   our   gauge   equation   (8),   we   get   our   three-gauge   functions   respectively:   

i)  f                                                            No gauge function  ϕ = 4
1

2 (x) y2 (x) = 0  
ii)  f y                   V ariable gauge functionϕ = 4

1
2 (x) y2 (x) = 4

1 · c · y2 (x) = c2
2 (x)   

iii)  c (x)                            Max variable gauge function           ϕ = ϕmax = 4
1

1 · Es (x) · B (x) · y2  

APPLICATIONS     

Applications   of   our   results   to   selected   ODEs   with   the   SF   solutions   are   summarized   in   the   following   table.   

                                                               TABLE   1.   

  
By   selecting     and     different   (regular,   modified,   spherical   and   spherical   modified)   Bessel   equations   are   obtained.  α , β γ  

CONCLUSION   

We  considered  the  linear  second-order  ODEs  whose  solutions  are  given  by  the  SF  of  mathematical  physics,  and                   
derived  general  standard  and  null  Lagrangians.  The  obtained  Lagrangians  are  new  and  they  generalize  those                 
previously  found.  The  derived  gauge  functions  are  also  new.  The  obtained  results  are  applied  to  the  Bessel,  Hermite                    
and  Legendre  equations,  thus,  they  are  of  primary  interests  to  physicists  and  applied  mathematicians.  The                 
presented   results   can   be   easily   applied   to   any   ODE   with   the   SF   solutions.   
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Abstract.  Efficient  and  versatile  photon-number  resolving  detectors  are  critical  to  the  development  of  future                
communication  systems.  The  quantum-dot,  optically-gated,  field-effect  transistor  (QDOGFET)  is  one  such  detector.              
Utilizing  quantum  dots  (QDs),  tiny  islands  of  semiconductor,  imbedded  in  a  transistor,  QDOGFETs  have  been  shown  to                   
exhibit  single-photon  sensitivity  and  photon-number-resolving  (PNR)  capabilities.  A  photon  is  detected  when  it               
photocharges  a  QD,  which  alters  the  amount  of  current  flowing  through  the  transistor  by  screening  the  gate  field.  Crucial                     
to  the  resolving  power  is  that  each  charged  QD  produce  the  same  response,  regardless  of  its  location  within  the  active                      
area  of  the  device.  Here,  we  investigate  the  extent  spatial  nonuniformities  in  the  QDOGFET’s  response  to  light  limit  its                     
ability  to  distinguish  different  numbers  of  photons.  By  using  an  optical-scanning  microscope  (OSM),  contour  plots  of  a                   
QDOGFET’s  response  are  acquired  that  show  that  the  device  exhibits  localized  “hotspots”  where  it  is  particularly                  
sensitive  to  photons.  The  spatial  resolution  of  the  microscope  is  enhanced  by  capping  the  QDOGFET  with  a                   
solid-immersion  lens  (SIL).  We  present  experimental  results  that  show  how  the  hotspots  depend  on  bias  conditions  and                   
help   decipher   the   root   cause   of   the   nonuniformities.   

I NTRODUCTION   

This  research  is  on  the  study  of  a  novel  method  of  detecting  individual  photons  that  makes  use  of                    
nanometer-sized  islands  of  semiconductor  material,  referred  to  as  quantum  dots  (QDs).  In  a  specially  designed                 
transistor,  referred  to  as  a  QDOGFET  (quantum  dot,  optically  gated,  field-effect  transistor)  [1-6],  an  array  of  QDs  is                    
embedded  near  the  transistor’s  conductive  channel.  A  photon  is  detected  when  it  photocharges  a  QD,  which  alters                   
the  amount  of  current  flowing  through  the  transistor  by  screening  the  gate  field.  It  has  been  demonstrated  that                    
QDOGFETs  exhibit  single-photon  sensitivity  with  high  internal  quantum  efficiency  [1,  2]  and,  moreover,  can                
accurately  discriminate  between  the  detection  of  0,  1,  2,  and  3  photons  83%  of  the  time  [3,  4].  However,  it  has  also                        
been  shown  that  the  resolving  power  of  the  detectors  degrade  as  photon  number  increases,  limiting  the  counts  to  low                     
numbers.  The  physical  mechanism  that  causes  the  degraded  photon-number  resolution  is  not  well  understood  but                 
appears  to  be  related  to  variations  in  the  response  of  the  detector  associated  with  the  seed  point  of  the  photon.  In  this                        
work,  we  present  the  results  of  measurements  where  we  use  an  optical  scanning  microscope  (OSM)  and  a                   
solid-immersion  lens  (SIL)  to  investigate  the  spatial  uniformity  of  the  QDOGFET’s  response  to  light  and  use  the                   
results   to   identify   the   mechanisms   that   degrade   the   resolving   power   the   device.     

B ACKGROUND   

QDOGFETs  employ  photoconductive  gain  [7]  and  QDs  to  detect  individual  photons.  Figure  1(a)  is  a  surface                  
image  of  the  device.  The  structure  consists  of  alternating  layers  of  GaAs  and  AlGaAs  with  a  single  layer  of  InGaAs                      
QDs  at  the  GaAs/AlGaAs  interface,  as  shown  in  Fig.  1(b).  A  thin  layer  of  silicon-doped  material  (Si  δ-doping)                    
provides  excess  electrons  to  the  conduction  band  (CB),  forming  a  two-dimensional  electron  gas  (2DEG)  at  the                  
GaAs/AlGaAs  interface  adjacent  to  the  QDs.  The  detector  is  fabricated  by  depositing  source  and  drain  ohmic                  
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contacts  on  the  structure  surface,  etching  a  mesa  between  the  contacts,  and  depositing  a  semitransparent  platinum                  
(Pt)  Schottky-barrier  gate  across  the  mesa.  The  area  where  photons  are  detected  is  defined  by  the  gated  portion  of                     
the  channel  mesa,  which  for  the  QDOGFET  studied  in  this  work,  is  5.625  µm 2   in  area  and  encompasses  about  2000                      
QDs.   

The  principles  of  operation  of  the  QDOGFET  are  shown  in  Fig.  1(b).  During  operation,  a  reverse  bias  (negative                    
gate  voltage,   V g )  is  applied  to  the  gate.  When  a  photon  is  absorbed  in  the  100-nm-thick  GaAs  absorption  layer                     
(between  the  QDs  and  2DEG),  it  excites  an  electron  from  the  valence  band  (VB)  to  the  conduction  band  (CB)                     
leaving  behind  an  empty  state,  or  hole,  in  the  VB.  Subsequently,  the  positively  charged  hole  is  swept  by  the  internal                      
electric  field  toward  the  QDs,  where  it  is  trapped,  while  the  excited  electron  is  swept  into  the  2DEG.  Once  in  a  QD,                        
the  hole  screens  the  internal  field  produced  by  the  gate  contact,  subsequently  changing  the  amount  of  current                   
flowing  in  the  2DEG  ( Δ I ds )  for  as  long  as  the  hole  is  stored  in  the  dot.  The  magnitude  of  the  step  in  current  is                          
dictated  by  the  transconductance   g m   of  the  FET,  where  care  must  be  taken  that  the  device  is  operating  in  the  linear                       
transconductive  region.  These  current  changes  are  converted  to  voltage  changes,   ,  via  a            V ΔI GΔ out =  − R ds    
transimpedance  amplifier  with  resistance,   R ,  and  gain,   G ,  which  are  monitored  by  external  electronics.  During                 
operation,   the   QDOGFET   and   its   surrounding   circuitry   are   cooled   in   order   to   decrease   electrical   noise.   

  

FIGURE   1.    (a)   Image   of   the   QDOGFET   surface   showing   the   drain,   gate,   source,   active   area,   and   conventional   current   direction   
during   operation.    (b)   Schematic   diagram   of   the   composition   and   band   structure   of   the   QDOGFET.   

  
When  the  gate  and  2DEG  of  the  QDOGFET  are  modelled  as  conductive  plates  of  an  ideal  parallel-plate                   

capacitor  (PPC)  with  the  QD  layer  treated  as  an  infinite  plane  of  charge  storage,  a  concise  relationship  exists                    
between  the  electrical  and  structural  characteristics  of  the  device  and  its  photoresponse   Δ I ds .  In  the  small-signal  limit,                   
the   step   in   the   channel   current   caused   by   a   single   trapped   hole   is   given   by     

  

IΔ ds = gm ε A′
eW (1)   

  

where   e  is  the  elementary  charge,   W  is  the  distance  between  the  Pt  gate  and  the  QD  layer,   ε’  is  the  electric                        
permittivity,  and   A  is  the  active  area  [4,  8].  Although  these  current  changes  are  small,  over  time  even  a  single                      
trapped  hole  causes  a  large  change  in  the  cumulative  charge  transferred  in  the  2DEG.  The  photoconductive  gain                  
associated  with  this  process  provides  the  detector  with  single-photon  sensitivity.  In  addition,  in  the  event  that                  
multiple  photons  photocharge  multiple  QDs,  the  net  change  in  current  is  proportional  to  the  number  of  photons,                   
provided  that  each  charged  QD  produces  the  same  response  regardless  of  its  location  within  the  active  area  of  the                     
detector.  It  is  this  aspect  of  the  QDOGFETs  that  provides  them  with  photon-number-resolving  capabilities  and  is  the                   
focus   of   this   work.   

E XPERIMENTAL    P ROCEDURE   

The  uniformity  of  the  responses  produced  by  different  QDs  within  the  QDOGFET  was  investigated  using  the                  
cryogenic  OSM  shown  schematically  in  Fig.  2(a).  In  these  measurements,  the  SIL-capped  QDOGFET  was  cooled  to                  
~117  K  while  focussed  50-ns  laser  pulses  were  roster  scanned  over  a  100-point  grid,  covering  its  active  area.  At                     
each  point  on  the  grid,  the  individual  steps  in  the  output  voltage,   Δ V out ,  caused  by  200  laser  pulses  were  recorded.                      
The  spatial  resolution  of  the  OSM  was  enhanced  by  mounting  a  cubic-zirconia  SIL  on  the  QDOGFET  surface.  The                    

    
(a)   (b)   
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provided  that  each  charged  QD  produces  the  same  response  regardless  of  its  location  within  the  active  area  of  the                     
detector.  It  is  this  aspect  of  the  QDOGFETs  that  provides  them  with  photon-number-resolving  capabilities  and  is  the                   
focus   of   this   work.   

E XPERIMENTAL    P ROCEDURE   

The  uniformity  of  the  responses  produced  by  different  QDs  within  the  QDOGFET  was  investigated  using  the                  
cryogenic  OSM  shown  schematically  in  Fig.  2(a).  In  these  measurements,  the  SIL-capped  QDOGFET  was  cooled  to                  
~117  K  while  focussed  50-ns  laser  pulses  were  roster  scanned  over  a  100-point  grid,  covering  its  active  area.  At                     
each  point  on  the  grid,  the  individual  steps  in  the  output  voltage,   Δ V out ,  caused  by  200  laser  pulses  were  recorded.                      
The  spatial  resolution  of  the  OSM  was  enhanced  by  mounting  a  cubic-zirconia  SIL  on  the  QDOGFET  surface.  The                    
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diffraction  limited  spot  diameter  of  monochromatic  light  is  given  by  ,  where   λ  is  the  wavelength  of  light,   n  is            NA n
0.52λ           

the  index  of  refraction  of  the  medium,  and  NA  is  the  numerical  aperture  of  the  objective  lens.  As  a  result,  by  using  a                         
cubic-zirconia  SIL  with   n  =  2.14,  the  spot  size  was  reduced  by  about  half  in  comparison  to  what  it  would  have  been                        
for  a  bare  QDOGFET.  The  OSM  utilized  a  50x-magnification  objective  lens  with  a  13-mm  working  distance  and                   
NA=0.55,  resulting  in  a  diffraction  limited  spot  size  of  360nm.  The  actual  spot  diameter  of  the  OSM  was  slightly                     
larger  due  to  imperfections  within  the  system.  Figure  2(a)  shows  the  ideal  case  when  the  laser  light  is  normally                     
incident  on  the  SIL.  During  scanning,  deviation  from  this  ideal  case  occurs  as  the  laser  spot  moves  over  the  surface                      
of  the  SIL.  However,  the  SIL  has  a  diameter  of  1mm,  while  the  maximum  dimension  of  our  scanned  area  is  less  than                        
3µm.  As  these  lengths  differ  by  3  orders  of  magnitude,  any  distortion  effects  due  to  scanning  across  the  SIL  are                     
negligible.   

From  the  roster  scans  of   Δ V out ,  contour  plots  of  the  mean  step  height  (MSH),  the  mean  number  of  photons                     
(MNP),  and  the  mean  signal  per  photon  (MSP)  were  produced  using  the  statistical  approach  detailed  in  Ref.  [2].                    
These  contour  plots  were  then  superimposed  onto  a  surface  image  of  the  device  for  reference.  For  example,  a                    
contour  plot  of  the  MSH  is  shown  in  Fig  2(b)  for   V g  =  -0.5  V,   V BP  =  +2  V,   R  =  100kΩ,  and   G  =  100.  Variations  in  the                               
response  of  the  QDOGET  are  apparent  in  the  data,  where  a  “hotspot”  consisting  of  a  region  of  enhanced  MSH  is                      
observed  towards  the  drain  side  of  the  device.  In  the  Results  Section  of  this  work,  we  present  contour  plots  acquired                      
for  a  variety  of  bias  conditions  that  show  how  the  hotspot  depends  on   V g  and   V BP .  From  these  data  sets,  we  gain                        
insight  into  what  is  causing  the  signal  nonuniformity.  Circuit  parameters,   R  and   G  are  kept  constant  for  all                    
measurements   presented   in   this   work.   
  

FIGURE   2.    (a)   Schematic   diagram   of   the   OSM   with   SIL   integration   that   was   used   to   map   the   photo-response   of   
QDOGFETs.   (b)   Overlay   of   a   MSH   contour   plot,   acquired   for    V BP    =   +2V   and    V g    =   -0.5   V,   on   an   image   of   sample,   with   the   active   
area   outlined   in   dashed   lines.    For    V BP    >   0,   the   drain   potential   is   higher   than   the   source   potential,   resulting   in   channel   current    I ds   

flowing   from   drain   to   source.   

R ESULTS   

Contour  plots  showing  the  effect  of  changing  the  direction  of  the  channel  current  are  shown  in  Fig.  3.  In  Fig.                      
3(a),   V BP  =  +2V,  and   I ds  flows  in  the  downward  direction,  while  in  Fig.  3(b),   V BP  =  -2V,  and   I ds  flow  in  the  upward                          
direction.  The  bottom  panels  of  the  figure  show  the  MSH  for  the  entire  100-pt  grid,  where  the  active  area  of  the                       
device  is  indicated  by  black  dashed  lines.  The  top  panels  show  the  MNP,  and  the  middle  panels  show  the  MSP.  For                       
these  panels,  data  is  only  shown  in  and  around  the  active  area,  since  calculations  of  MNP  and  MSP  are  nonsensical                      
beyond  the  boundaries  of  the  active  area  where  the  QDOGFET  is  not  sensitive  to  light.  The  theoretical  value  for  the                      
signal  per  photon,   Δ V out ,  calculated  using  Eqn.  [1]  is  also  provided  in  the  figure  for  comparison.  It  is  also  marked  by                       
a  black  bar  on  the  MSP  legends.  The  potential  difference  between  the  source  and  drain  contacts  is  also  indicated  on                      
the   figure.   

The  contour  plots  shown  in  Fig.  3  illustrate  that  the  cause  of  the  hotspot  is  electrical  in  nature,  as  opposed  to                       
being  structural.  Notice  that  for  both  polarities,  the  hotspot  in  the  MSH  (bottom  panels)  is  observed  near  the                    
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high-potential  side  of  the  gate.  This  would  not  be  observed  if  the  hotspot  were  due  to  variation  in  the  thickness  of                       
the  gate  contact.  The  MNP  and  MSP  data  provide  further  insight  into  the  origins  of  the  hotspot.  The  MSP  contour                      
plots  (middle  panels)  show  some  nonuniformity  across  the  active  area,  but  the  pattern  is  less  organized  than  the                    
MSH  data.  Overall,  the  MSP  measured  across  the  majority  of  the  active  area  is  in  good  agreement  with  that                     
predicted  by  the  PPC  model  for  both  polarities.  By  contrast,  the  nonuniformity  observed  in  the  MNP  contour  plots                    
(top  panels)  better  match  those  observed  for  the  MSH  plots,  which  indicates  that  hotspot  is  a  result  of  more  efficient                      
detection   of   photons   seeded   near   the   high-potential   side   of   the   active   area.     

The  enhanced  detection  efficiency  observed  near  the  high-potential  side  of  the  active  area  can  be  explained  by                   
the  dynamics  of  the  photo-excited  holes.  While  the  transport  of  the  holes  perpendicular  to  the  plane  of  the  absorption                     
layer  is  subject  to  the  gate  field,  the  motion  of  the  holes  in  the  plane  of  the  absorption  layer  is  influenced  by  the                         
potential  difference  between  the  source  and  drain  contacts.  As  such,  positively  charged  holes  tend  to  be  “washed”                   
downstream  in  the  direction  of  the  channel  current   I ds .  Given  these  dynamics,  holes  excited  towards  the                  
high-potential  side  of  the  active  area  flow  in  the  direction  of   I ds ,  but  can  still  be  trapped  by  QDs  beneath  the  gate                        
contact  and  thus  alter  the  channel  current.  By  contrast,  holes  generated  near  the  low-potential  side  of  the  active  area                     
tend   to   exit   the   gated   area   before   they   can   be   trapped   by   a   QD.     

  

FIGURE   3.    Contour   plots   of   the   MSH   (bottom),   MSP   (middle),   and   MNP   (top)   for    V g    =   -0.5   V   and   (a)    V BP    =   +2V,   and     
(b)    V BP    =   -2V.    The   signal   per   photon   (Δ V out )   calculated   using   the   PPC   model   and   Eqn.   [1]   is   provided   for   comparison.   The   

potential   difference   between   the   source   and   drain   contacts   is   provided   in   the   middle   panel.   
  

The  effects  of  varying   V g  on  the  contour  plots  of  the  MSH,  MNP,  and  MSP  are  shown  in  Fig.  4.  The  bottom                        
panels  show  that  the  hotspot  is  more  centrally  located  on  the  active  area  when  a  lower-magnitude  gate  voltage  is                     
used.  As  the  magnitude  of   V g  is  increased,  the  hotspot  is  pushed  further  towards  the  high-potential  side  of  the  active                      
area.  Also,  the  MSP  becomes  less  uniform  and  deviates  further  from  the  theoretical   Δ V out .  This  behaviour  can  be                    
explained  by  the  large  potential  gradient  that  is  formed  across  the  active  area  when  a  large  gate  voltage  is  used.                      
Notice  that  for   V g   =  -1.5V,  the  potential  difference  between  the  source  and  drain  contacts  is  0.85V,  which  results  in  a                       
large  gradient  in  the  localized  gate  voltage  over  the  active  area  of  the  device.  While  the  2DEG  located  on  the                      
low-potential  side  of  the  active  area  is  gated  by  a  local   V g  of  -1.5V,  the  other  side  is  gated  by  a  -2.35V  bias.  Holes                          
trapped  in  QDs  on  the  high-potential  side  of  the  active  area  will  screen  the  larger  gate  field,  which  has  a  bigger                       
impact  on  the  channel  current,  consistent  with  the  contour  of  the  MSP  data  shown  in  Fig.  4(c).  The  fact  that  the                       
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diffraction  limited  spot  diameter  of  monochromatic  light  is  given  by  ,  where   λ  is  the  wavelength  of  light,   n  is            NA n
0.52λ           

the  index  of  refraction  of  the  medium,  and  NA  is  the  numerical  aperture  of  the  objective  lens.  As  a  result,  by  using  a                         
cubic-zirconia  SIL  with   n  =  2.14,  the  spot  size  was  reduced  by  about  half  in  comparison  to  what  it  would  have  been                        
for  a  bare  QDOGFET.  The  OSM  utilized  a  50x-magnification  objective  lens  with  a  13-mm  working  distance  and                   
NA=0.55,  resulting  in  a  diffraction  limited  spot  size  of  360nm.  The  actual  spot  diameter  of  the  OSM  was  slightly                     
larger  due  to  imperfections  within  the  system.  Figure  2(a)  shows  the  ideal  case  when  the  laser  light  is  normally                     
incident  on  the  SIL.  During  scanning,  deviation  from  this  ideal  case  occurs  as  the  laser  spot  moves  over  the  surface                      
of  the  SIL.  However,  the  SIL  has  a  diameter  of  1mm,  while  the  maximum  dimension  of  our  scanned  area  is  less  than                        
3µm.  As  these  lengths  differ  by  3  orders  of  magnitude,  any  distortion  effects  due  to  scanning  across  the  SIL  are                     
negligible.   

From  the  roster  scans  of   Δ V out ,  contour  plots  of  the  mean  step  height  (MSH),  the  mean  number  of  photons                     
(MNP),  and  the  mean  signal  per  photon  (MSP)  were  produced  using  the  statistical  approach  detailed  in  Ref.  [2].                    
These  contour  plots  were  then  superimposed  onto  a  surface  image  of  the  device  for  reference.  For  example,  a                    
contour  plot  of  the  MSH  is  shown  in  Fig  2(b)  for   V g  =  -0.5  V,   V BP  =  +2  V,   R  =  100kΩ,  and   G  =  100.  Variations  in  the                               
response  of  the  QDOGET  are  apparent  in  the  data,  where  a  “hotspot”  consisting  of  a  region  of  enhanced  MSH  is                      
observed  towards  the  drain  side  of  the  device.  In  the  Results  Section  of  this  work,  we  present  contour  plots  acquired                      
for  a  variety  of  bias  conditions  that  show  how  the  hotspot  depends  on   V g  and   V BP .  From  these  data  sets,  we  gain                        
insight  into  what  is  causing  the  signal  nonuniformity.  Circuit  parameters,   R  and   G  are  kept  constant  for  all                    
measurements   presented   in   this   work.   
  

FIGURE   2.    (a)   Schematic   diagram   of   the   OSM   with   SIL   integration   that   was   used   to   map   the   photo-response   of   
QDOGFETs.   (b)   Overlay   of   a   MSH   contour   plot,   acquired   for    V BP    =   +2V   and    V g    =   -0.5   V,   on   an   image   of   sample,   with   the   active   
area   outlined   in   dashed   lines.    For    V BP    >   0,   the   drain   potential   is   higher   than   the   source   potential,   resulting   in   channel   current    I ds   

flowing   from   drain   to   source.   

R ESULTS   

Contour  plots  showing  the  effect  of  changing  the  direction  of  the  channel  current  are  shown  in  Fig.  3.  In  Fig.                      
3(a),   V BP  =  +2V,  and   I ds  flows  in  the  downward  direction,  while  in  Fig.  3(b),   V BP  =  -2V,  and   I ds  flow  in  the  upward                          
direction.  The  bottom  panels  of  the  figure  show  the  MSH  for  the  entire  100-pt  grid,  where  the  active  area  of  the                       
device  is  indicated  by  black  dashed  lines.  The  top  panels  show  the  MNP,  and  the  middle  panels  show  the  MSP.  For                       
these  panels,  data  is  only  shown  in  and  around  the  active  area,  since  calculations  of  MNP  and  MSP  are  nonsensical                      
beyond  the  boundaries  of  the  active  area  where  the  QDOGFET  is  not  sensitive  to  light.  The  theoretical  value  for  the                      
signal  per  photon,   Δ V out ,  calculated  using  Eqn.  [1]  is  also  provided  in  the  figure  for  comparison.  It  is  also  marked  by                       
a  black  bar  on  the  MSP  legends.  The  potential  difference  between  the  source  and  drain  contacts  is  also  indicated  on                      
the   figure.   

The  contour  plots  shown  in  Fig.  3  illustrate  that  the  cause  of  the  hotspot  is  electrical  in  nature,  as  opposed  to                       
being  structural.  Notice  that  for  both  polarities,  the  hotspot  in  the  MSH  (bottom  panels)  is  observed  near  the                    
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high-potential  side  of  the  gate.  This  would  not  be  observed  if  the  hotspot  were  due  to  variation  in  the  thickness  of                       
the  gate  contact.  The  MNP  and  MSP  data  provide  further  insight  into  the  origins  of  the  hotspot.  The  MSP  contour                      
plots  (middle  panels)  show  some  nonuniformity  across  the  active  area,  but  the  pattern  is  less  organized  than  the                    
MSH  data.  Overall,  the  MSP  measured  across  the  majority  of  the  active  area  is  in  good  agreement  with  that                     
predicted  by  the  PPC  model  for  both  polarities.  By  contrast,  the  nonuniformity  observed  in  the  MNP  contour  plots                    
(top  panels)  better  match  those  observed  for  the  MSH  plots,  which  indicates  that  hotspot  is  a  result  of  more  efficient                      
detection   of   photons   seeded   near   the   high-potential   side   of   the   active   area.     

The  enhanced  detection  efficiency  observed  near  the  high-potential  side  of  the  active  area  can  be  explained  by                   
the  dynamics  of  the  photo-excited  holes.  While  the  transport  of  the  holes  perpendicular  to  the  plane  of  the  absorption                     
layer  is  subject  to  the  gate  field,  the  motion  of  the  holes  in  the  plane  of  the  absorption  layer  is  influenced  by  the                         
potential  difference  between  the  source  and  drain  contacts.  As  such,  positively  charged  holes  tend  to  be  “washed”                   
downstream  in  the  direction  of  the  channel  current   I ds .  Given  these  dynamics,  holes  excited  towards  the                  
high-potential  side  of  the  active  area  flow  in  the  direction  of   I ds ,  but  can  still  be  trapped  by  QDs  beneath  the  gate                        
contact  and  thus  alter  the  channel  current.  By  contrast,  holes  generated  near  the  low-potential  side  of  the  active  area                     
tend   to   exit   the   gated   area   before   they   can   be   trapped   by   a   QD.     

  

FIGURE   3.    Contour   plots   of   the   MSH   (bottom),   MSP   (middle),   and   MNP   (top)   for    V g    =   -0.5   V   and   (a)    V BP    =   +2V,   and     
(b)    V BP    =   -2V.    The   signal   per   photon   (Δ V out )   calculated   using   the   PPC   model   and   Eqn.   [1]   is   provided   for   comparison.   The   

potential   difference   between   the   source   and   drain   contacts   is   provided   in   the   middle   panel.   
  

The  effects  of  varying   V g  on  the  contour  plots  of  the  MSH,  MNP,  and  MSP  are  shown  in  Fig.  4.  The  bottom                        
panels  show  that  the  hotspot  is  more  centrally  located  on  the  active  area  when  a  lower-magnitude  gate  voltage  is                     
used.  As  the  magnitude  of   V g  is  increased,  the  hotspot  is  pushed  further  towards  the  high-potential  side  of  the  active                      
area.  Also,  the  MSP  becomes  less  uniform  and  deviates  further  from  the  theoretical   Δ V out .  This  behaviour  can  be                    
explained  by  the  large  potential  gradient  that  is  formed  across  the  active  area  when  a  large  gate  voltage  is  used.                      
Notice  that  for   V g   =  -1.5V,  the  potential  difference  between  the  source  and  drain  contacts  is  0.85V,  which  results  in  a                       
large  gradient  in  the  localized  gate  voltage  over  the  active  area  of  the  device.  While  the  2DEG  located  on  the                      
low-potential  side  of  the  active  area  is  gated  by  a  local   V g  of  -1.5V,  the  other  side  is  gated  by  a  -2.35V  bias.  Holes                          
trapped  in  QDs  on  the  high-potential  side  of  the  active  area  will  screen  the  larger  gate  field,  which  has  a  bigger                       
impact  on  the  channel  current,  consistent  with  the  contour  of  the  MSP  data  shown  in  Fig.  4(c).  The  fact  that  the                       
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MNP  is  lower  on  the  high-potential  side  of  the  active  area  indicates  that  although  the  MSP  is  enhanced  in  this                      
region,   the   detection   efficiency   is   low   since   most   of   the   photoexcited   holes   drift   out   of   the   area   downstream.   

  

FIGURE   4.    Contour   plots   of   the   MSH   (bottom),   MSP   (middle),   and   MNP   (top)   for    V BP    =   +2V   and   (a)    V g    =   -0.1   V,     
(b)    V g    =   -0.5V,   and   (c)    V g    =   -1.5V.   The   signal   per   photon   (Δ V out )   calculated   using   the   PPC   model   and   Eqn.   [1]   is   provided   for   

comparison.   The   potential   difference   between   the   source   and   drain   contacts   is   provided   in   the   middle   panel.   

C ONCLUSIONS   

In  this  work  we  have  spatially  resolved  the  variation  in  the  MSH,  MNP,  and  MSP  over  the  active  area  of  a                       
SIL-capped  QDOGFET.  We  have  shown  that  the  observed  variation  is  due  to  electrical  aspects  of  the  device,  rather                    
than  physical  ones  and  that  the  gate  voltage  and  current  polarity  greatly  affect  these  variations.  Specifically,  the                   
hotspot  tends  towards  the  high  potential  side  of  the  active  area,  with  a  larger  potential  gradient  corresponding  to  a                     
greater  shift  to  that  side.  The  variation  in  the  MNP  can  be  explained  in  terms  of  the  in-plane  transport  of  the  holes,                        
where  they  tend  to  drift  downstream  in  the  same  direction  of   I ds .  We  also  see  that  the  MSP  is  more  uniform  for                        
smaller  gate  voltages  due  to  the  lower  localized  potential  difference  over  the  active  area.  This  finding  is  consistent                    
with  previous  work  [3,  4],  where  lower  gate  voltages  were  used  when  demonstrating  the  photon-number-resolving                 
capabilities   of   QDOGFET.   
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MNP  is  lower  on  the  high-potential  side  of  the  active  area  indicates  that  although  the  MSP  is  enhanced  in  this                      
region,   the   detection   efficiency   is   low   since   most   of   the   photoexcited   holes   drift   out   of   the   area   downstream.   

  

FIGURE   4.    Contour   plots   of   the   MSH   (bottom),   MSP   (middle),   and   MNP   (top)   for    V BP    =   +2V   and   (a)    V g    =   -0.1   V,     
(b)    V g    =   -0.5V,   and   (c)    V g    =   -1.5V.   The   signal   per   photon   (Δ V out )   calculated   using   the   PPC   model   and   Eqn.   [1]   is   provided   for   

comparison.   The   potential   difference   between   the   source   and   drain   contacts   is   provided   in   the   middle   panel.   

C ONCLUSIONS   

In  this  work  we  have  spatially  resolved  the  variation  in  the  MSH,  MNP,  and  MSP  over  the  active  area  of  a                       
SIL-capped  QDOGFET.  We  have  shown  that  the  observed  variation  is  due  to  electrical  aspects  of  the  device,  rather                    
than  physical  ones  and  that  the  gate  voltage  and  current  polarity  greatly  affect  these  variations.  Specifically,  the                   
hotspot  tends  towards  the  high  potential  side  of  the  active  area,  with  a  larger  potential  gradient  corresponding  to  a                     
greater  shift  to  that  side.  The  variation  in  the  MNP  can  be  explained  in  terms  of  the  in-plane  transport  of  the  holes,                        
where  they  tend  to  drift  downstream  in  the  same  direction  of   I ds .  We  also  see  that  the  MSP  is  more  uniform  for                        
smaller  gate  voltages  due  to  the  lower  localized  potential  difference  over  the  active  area.  This  finding  is  consistent                    
with  previous  work  [3,  4],  where  lower  gate  voltages  were  used  when  demonstrating  the  photon-number-resolving                 
capabilities   of   QDOGFET.   
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Abstract.  Over  the  past  15  years,  Hope  College  has  been  producing  hydrogen  and  helium  ion  beams  with  an  Alphatross ®                     
ion  source  and  5SDH  Pelletron ®  tandem  Van  de  Graaff  accelerator.  The  manufacturer  stated  the  possibility  of  creating                   
nitrogen  ions  from  this  source,  but  Hope  College  has  not,  up  until  now,  attempted  to  do  so.  By  mixing  approximately  1%                       
nitrogen  into  hydrogen  source  gas,  imidogen  (NH - )  and  amidogen  (NH 2 

- )  ions  are  created  and  accelerated  through  the                   
tandem  accelerator.  Oxygen  and  hydroxide  beams  are  also  present  due  to  residual  water  vapor  in  the  source  after                    
maintenance.  Post  acceleration,  these  ion  beams  were  directed  into  a  scattering  chamber  by  a  dipole  bending  magnet  for                   
identification.  Alternate  beams  such  as  these  open  up  new  possibilities  for  future  experiments  such  as  nitrogen                  
implantation.   

I NTRODUCTION   

Hope  College  has  an  Alphatross ®  ion  source 1  paired  with  a  5SDH  Pelletron ®  tandem  Van  de  Graff  Accelerator 2 .                   
The  Alphatross ®  ion  source  is  a  charge-exchange  type  source  and  is  marketed  and  used  as  a  source  for  negative  H                      
and  He  ions.  Many  of  these  sources  are  in  operation  around  the  world  because  they  are  a  reliable  technology  for  the                       
production   of   He -    ions,   not   available   from   sputter   sources,   for   acceleration   by   tandem   accelerators 3 .   

The  manufacturer  of  this  ion  source,  National  Electrostatics  Corporation 4 ,  and  Ref.  5  state  there  is  a  possibility  of                    
creating  imidogen  (NH - ),  oxygen,  and  hydroxide  (OH - )  ions  with  this  ion  source.  Amidogen  (NH 2 

- )  ions  could                  
potentially  be  made,  but  N -  ions  are  unexpected  because  the  ground  state  electron  configuration  of  this  ion  is                    
unstable. 6  However,  very  little  exact  information  about  finding  and  optimizing  these  alternate  beams  is  given.  The                  
process  necessary  to  make  these  alternate  beams  was  studied.  Source  gas  changes  were  necessary  and  a  model  for                    
the  bending  magnet  was  created  assuming  non-relativistic  particles.  Although  the  paths  through  the  beam  line  are                  
very  complex,  the  underlying  principle  for  the  model  is  that  all  particles  with  the  same  value  of   will  take  the                   v qB  m /     
same  path  through  the  focusing  and  bending  magnets.  Sample  ion  source  and  accelerator  settings  for  various  beam                   
species  have  been  found  for  various  beam  energies  and  ions.  The  magnet  current  required  to  bend  these  beams  can                     
be  consistently  predicted  using  the  model  which  confirms  the  identity  of  each  beam.  These  beams  have  the  potential                    
for   being   used   for   nitrogen   implantation.   

A CCELERATOR    D ESCRIPTION   

The  current  accelerator  at  Hope  College  was  installed  in  2004. 7,8  Fig.  1  shows  a  layout  of  the  installation.  An                     
Alphatross ®  ion  source  creates  a  plasma  using  an  RF  electric  field  and  a  magnetic  field.  Ions  are  extracted  with  an                      
axial  electric  field  (probe).  The  positive  ions  from  the  plasma  undergo  charge  exchange  as  they  pass  through                   
gaseous  rubidium. 1,3  Between  the  ion  source  and  the  low  energy  entrance  to  the  accelerator,  the  now  negative  ions                    
are  focused  and  steered.  The  focusing  and  steering  elements  include  a  velocity  selector  (crossed  electric  and                  
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magnetic  field),  a  vertical  electrostatic  steerer,  and  an  electrostatic  Einzel  lens.  An  insertable  Faraday  cup  is  used  to                    
measure  the  low  energy  beam  current.  While  different  ions  such  as  NH -  and  NH 2 

-  will  have  different  speeds  and                     
only  one  will  follow  the  central  path  through  the  accelerator,  the  low-energy  Faraday  cup  cannot  distinguish  these                   
two  ions.  The  same  is  true  for  O -  and  OH -  ions.  The  two  velocities  are  very  close  and  since  the  Faraday  cup  is  close                          
to   the   velocity   selector,   the   two   species   are   not   significantly   separate   in   space   when   they   reach   the   cup.   

  

  
FIGURE   1.     Layout   of   the   accelerator   and   associated   components.     

  
The  tandem  Van  de  Graff  accelerator  has  a  maximum  Terminal  Voltage  ( )  of  1.7  MV.  The  ions  are  first             VT         

accelerated  by  the  positive   toward  the  center  of  the  accelerator  gaining  energy.  Electrons  are  then  stripped  off      VT               
during  collisions  with  low  pressure  nitrogen  gas  in  the  center  of  the  tandem  leaving  a  positive  ion  which  is  repelled                      
by  the   gaining  additional  energy.  Ions  will  have  a  total  energy  that  depends  on  the  TV  and  Charge  State  ( )    VT                   SC  
of  the  ion  after  undergoing  stripping  in  the  terminal  of  the  accelerator  according  to  .  This                ≈T V V SE + T * C   
expression  is  approximate  because  the  ions  always  have  some  initial  energy  from  the  ion  source.  Additionally,  in                  
those  cases  where  the  source  produces  a  molecular  ion  rather  than  a  simple  atomic  ion,  the  expression  is  even  less                      
exact  because  it  does  not  recognize  that  the  ion  has  a  different  mass  before  and  after  charge  exchange  in  the  center                       
of  the  accelerator.  In  general,  hydrogen  beams  will  have  a  maximum  energy  of  3.4  MeV,  and  α  particles  (He 2+ )                ̃       
have   a   maximum   energy   of   5.1   MeV.    ̃   

After  the  accelerator,  the  beam  is  directed  down  a  beam  line  which  includes  an  x  and  y  quadrupole-doublet                    
focusing  magnet  and  a  dipole  bending  magnet.  The  dipole  magnet  deflects  the  beam  by  15 o  into  a  scattering                    
chamber  7.2  m  downstream.  The  x  and  y  magnetic  steering  magnets  on  this  line  were  only  varied  when  the    ̃                   
particular  species  and  charge  state  were  changed  to  minimize  perturbations  to  the  path.  A  beam  profile  monitor  is                    
positioned  immediately  before  the  scattering  chamber  and  is  used  to  ensure  a  consistent  beam  position  and  shape                   
regardless  of  beam  species  and  energy.  The  scattering  chamber  is  equipped  with  a  Faraday  cup  to  measure  beam                    
current,   and   the   current   in   this   cup   was   maximized   at   each   setting   to   fine   tune   the   beam   line   settings.     

M ODELING    I ON    B EAM     BEHAVIOR   

Approximate  ion  source  settings  for  imidogen  (NH - )  are  given  by  the  Alphatross  manufacturer,  but  there  is  only                   
limited  documentation  regarding  specifics.  There  is  little  information  about  exactly  what  is  extracted  from  the  ion                  
source.  Specifically,  does  the  source  produce  atomic  nitrogen  N -  (unexpected  because  the  extra  electron  is                 
unbound),  molecular  NH,  molecular  NH 2  or  a  combination?  In  principle,  the  current  in  the  dipole  bending  magnet  is                    
a  sensitive  indicator  of  the  energy  and  species  of  the  accelerated  ion,  Thus,  the  main  challenge  of  finding  and                     
identifying   alternate   beams   is   the   need   to   accurately   model   the   bending   magnet   behavior.   

In   general,   the   behavior   of   the   dipole   magnet   can   be   modeled   based   on   Eq.   1,  
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,  r = qB
mv = K√ mE

q I2 2 (1)   
where   is  the  ion  mass,   is  the  ion  velocity,   is  the  charge  of  the  ion,  and   is  the  magnetic  field  in  the   m      v      q         B        
magnet.  Note  that,  as  is  frequently  the  case,  the  magnetic  field  is  not  known,  but  rather  it  is  the  current  through  the                        
magnet  that  is  known.  The  goal  is  to  establish  a  constant  path  through  the  bending  magnet  and  then  calibrate  the                      
current   in   the   magnet   with   well   known   ion   species   and   energies.     

Eq.   1   can   also   be   cast   in   terms   of   ,   the   total   kinetic   energy   of   the   ion,   ,   the   current   in   the   magnet   coils,   and   E I   
,  a  proportionality  constant.  The  proportionality  constant  is  not  known  because  the  field  for  the  actual  magnet  has  K                   

not  been  mapped  to  establish  a  relationship  between  the  current  and  the  field.  However,  if  ions  are  constrained  to                     
always  follow  the  same  path  through  the  magnet,  the  current  needed  to  bend  a  reference  ion  with  radius   can  be                    r0    
related   to   the   current   needed   for   any   other   ion   following   radius     according   to   Eq.   2.  r  

  

⇒ I I   r0 = r √ q2
0

m E0 0
0 =√ q2

mE (2)   

  
This  can  be  rearranged  as  shown  in  Eq.  3  to  predict  the  appropriate   for  any  ion  given  a  current   for  a  specific               I        I0     
ion   with   ,   ,   and     that   follows   a   central   path.   m0 q0 E0   

  
 I

I0
= q

q0√ mE
E m0 0

(3)   
  

The  process  of  determining  the  proportionality  constant  began  with  a  well-understood  reference  beam,  Hydrogen                
at  2.513±0.020  MeV.  Eq.  3  then  gives  approximate  current  values  for  beams  of  He  and  O.  If  the  measured  currents                      
are  plotted  versus  ,  the  current  should  show  a   behavior.  The  offset  term  was  included  to  account  for     q2

Em       y = a + b√x           
an   offset   in   the   current   readback   from   the   power   supply   versus   the   actual   field   in   the   magnet   coils.   

There  is  one  final  consideration  that  is  necessary.  When  the  species  leaving  the  ion  source  are  molecular  ions                    
such  as  imidogen  (NH - )  or  hydroxide  (OH - ),  these  molecules  will  dissociate  in  the  center  of  the  terminal.  In  these                     
cases,  the  energy  gained  during  transit  through  the  accelerator  is  more  complicated  because  the  molecule  dissociates                  
when   stripping   in   the   terminal   takes   place.    The   result   is   that   the   final   energy   of   a   particle   is   

  
(∣q ∣V ) V  Efinal = m

M i terminal + Esource + qf terminal (4)   
  

where   is  the  charge  of  the  ion  extracted  from  the  the  source,   is  the  charge  after  stripping,   is  the  mass  of  the   qi             qf       m       
species  exiting  the  accelerator  and  traversing  the  magnet  and   is  the  mass  of  the  molecule  produced  in  the  ion           M            
source.  The  final  energies  listed  in  Table  I  do  include  the  energy  given  the  ions  by  the  extraction  voltage  in  the  ion                        
source  and  the  overall  bias  voltage  applied  to  the  source  ( .  In  this  study,  no  attempt  was  made  to  relate            )Esource           
measurements  to  a  theory  of  the  dissociation  of  fast  molecular  species  in  matter.  There  is  some  theoretical                   
understanding   of   the   dissociation   process   given   in   Refs.   9   and   10.   

M EASUREMENTS   

The  bending  magnet  current  for  various  ions  with  various  charge  states  and  total  kinetic  energies  (various                  
terminal  voltages)  was  adjusted  for  maximum  beam  current  in  the  scattering  chamber  Faraday  cup.  A  summary  list                   
of   combinations   measured   is   given   in   Table   1.   

The  beam-line  steerers  and  the  quadrupole  doublet  focusing  magnet  were  left  constant  through  the  range  in  order                   
to  prevent  skewing  the  data  by  introducing  a  different  path  for  the  particles.  A  beam  profile  monitor  and  a  Faraday                      
cup  in  the  downstream  scattering  chamber  were  used  to  find  the  bending  magnet  current  that  gave  the  maximum                    
beam.  The  beam  profile  monitor  allowed  one  to  get  close  to  the  desired  beam  location  since  this  visual  aid  is  easier                       
to   use   and   insured   that   the   trajectory   was   not   somehow   skewed.   

The  optimal  magnet  current  and  the  beam  kinetic  energy  have  some  uncertainty.  The  statistical  uncertainty  in                  
the  magnet  current  was  taken  to  be  0.05  A  and  reflects  the  inability  of  the  accelerator  operator  to  find  the  absolute                       
best  setting  given  the  inherent  fluctuations  in  beam  current.  This  uncertainty  is  smaller  than  the  symbols  in  the                    
figures  shown  and  discussed  below.  There  is  also  a  systematic  uncertainty  due  to  the  calibration  of  the  generating                    
voltmeter.    This   uncertainty   is   estimated   to   be   ±20   keV   and   arises   because   the   GVM   calibration   is   done   infrequently.     
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Eq.   1   can   also   be   cast   in   terms   of   ,   the   total   kinetic   energy   of   the   ion,   ,   the   current   in   the   magnet   coils,   and   E I   
,  a  proportionality  constant.  The  proportionality  constant  is  not  known  because  the  field  for  the  actual  magnet  has  K                   

not  been  mapped  to  establish  a  relationship  between  the  current  and  the  field.  However,  if  ions  are  constrained  to                     
always  follow  the  same  path  through  the  magnet,  the  current  needed  to  bend  a  reference  ion  with  radius   can  be                    r0    
related   to   the   current   needed   for   any   other   ion   following   radius     according   to   Eq.   2.  r  

  

⇒ I I   r0 = r √ q2
0

m E0 0
0 =√ q2

mE (2)   

  
This  can  be  rearranged  as  shown  in  Eq.  3  to  predict  the  appropriate   for  any  ion  given  a  current   for  a  specific               I        I0     
ion   with   ,   ,   and     that   follows   a   central   path.   m0 q0 E0   

  
 I

I0
= q

q0√ mE
E m0 0

(3)   
  

The  process  of  determining  the  proportionality  constant  began  with  a  well-understood  reference  beam,  Hydrogen                
at  2.513±0.020  MeV.  Eq.  3  then  gives  approximate  current  values  for  beams  of  He  and  O.  If  the  measured  currents                      
are  plotted  versus  ,  the  current  should  show  a   behavior.  The  offset  term  was  included  to  account  for     q2

Em       y = a + b√x           
an   offset   in   the   current   readback   from   the   power   supply   versus   the   actual   field   in   the   magnet   coils.   

There  is  one  final  consideration  that  is  necessary.  When  the  species  leaving  the  ion  source  are  molecular  ions                    
such  as  imidogen  (NH - )  or  hydroxide  (OH - ),  these  molecules  will  dissociate  in  the  center  of  the  terminal.  In  these                     
cases,  the  energy  gained  during  transit  through  the  accelerator  is  more  complicated  because  the  molecule  dissociates                  
when   stripping   in   the   terminal   takes   place.    The   result   is   that   the   final   energy   of   a   particle   is   

  
(∣q ∣V ) V  Efinal = m

M i terminal + Esource + qf terminal (4)   
  

where   is  the  charge  of  the  ion  extracted  from  the  the  source,   is  the  charge  after  stripping,   is  the  mass  of  the   qi             qf       m       
species  exiting  the  accelerator  and  traversing  the  magnet  and   is  the  mass  of  the  molecule  produced  in  the  ion           M            
source.  The  final  energies  listed  in  Table  I  do  include  the  energy  given  the  ions  by  the  extraction  voltage  in  the  ion                        
source  and  the  overall  bias  voltage  applied  to  the  source  ( .  In  this  study,  no  attempt  was  made  to  relate            )Esource           
measurements  to  a  theory  of  the  dissociation  of  fast  molecular  species  in  matter.  There  is  some  theoretical                   
understanding   of   the   dissociation   process   given   in   Refs.   9   and   10.   

M EASUREMENTS   

The  bending  magnet  current  for  various  ions  with  various  charge  states  and  total  kinetic  energies  (various                  
terminal  voltages)  was  adjusted  for  maximum  beam  current  in  the  scattering  chamber  Faraday  cup.  A  summary  list                   
of   combinations   measured   is   given   in   Table   1.   

The  beam-line  steerers  and  the  quadrupole  doublet  focusing  magnet  were  left  constant  through  the  range  in  order                   
to  prevent  skewing  the  data  by  introducing  a  different  path  for  the  particles.  A  beam  profile  monitor  and  a  Faraday                      
cup  in  the  downstream  scattering  chamber  were  used  to  find  the  bending  magnet  current  that  gave  the  maximum                    
beam.  The  beam  profile  monitor  allowed  one  to  get  close  to  the  desired  beam  location  since  this  visual  aid  is  easier                       
to   use   and   insured   that   the   trajectory   was   not   somehow   skewed.   

The  optimal  magnet  current  and  the  beam  kinetic  energy  have  some  uncertainty.  The  statistical  uncertainty  in                  
the  magnet  current  was  taken  to  be  0.05  A  and  reflects  the  inability  of  the  accelerator  operator  to  find  the  absolute                       
best  setting  given  the  inherent  fluctuations  in  beam  current.  This  uncertainty  is  smaller  than  the  symbols  in  the                    
figures  shown  and  discussed  below.  There  is  also  a  systematic  uncertainty  due  to  the  calibration  of  the  generating                    
voltmeter.    This   uncertainty   is   estimated   to   be   ±20   keV   and   arises   because   the   GVM   calibration   is   done   infrequently.     

The  large  dipole  bending  magnet  is  subject  to  hysteresis  effects.  If  hysteresis  is  ignored  when  magnet                  
adjustments  are  made  during  beam  tuning,  the  relationship  between  the  expected  setting  and  actual  setting  becomes                  
too  imprecise.  The  size  of  this  effect  is  shown  in  Fig.  2.  All  the  measurements  presented  in  the  next  section  were                       
made  in  a  way  where  the  magnet  current  was  always  only  increased.  If  the  magnet  current  needed  to  be  reduced,  it                       
was  turned  back  to  zero  before  being  increased  again.  Great  care  was  taken  when  tuning  for  maximum  beam  to                     
increase   the   current   in   small   steps   so   as   not   to   overshoot   the   correct   current   for   maximum   beam.   

  
FIGURE   2.     Hysteresis   in   the   dipole   bending   magnet.    The   solid   black   line   indicates   magnet   current   with   increasing   energy   and   

the   red   dotted   curve   was   measured   with   decreasing   steps.    (Color   on-line)   

R ESULTS   

The  goal  of  this  work  was  to  conclusively  identify  ion  beams,  especially  nitrogen,  imidogen,  and  amidogen  from                   
the  Alphatross®  ion  source  and  transport  the  resulting  beam  to  the  scattering  chamber  with  a  usable  intensity  (>0.3                    
nA  in  the  scattering  chamber).  In  order  to  definitively  identify  the  ions,  especially  those  associated  with  molecules,                   
the   systematics   of   the   transport   needed   to   be   well   understood.   

Various  combinations  of  different  ions  from  the  ion  source,  accelerating  potentials,  and  final  charge  states  were                  
directed  into  the  end-station  Faraday  cup  and  the  magnet  current  was  recorded.  Table  1  and  Fig.  3  summarize  the                     
various   combinations   that   were   conclusively   identified.   

Starting  with  the  H +  ions  of  various  energies,  a  preliminary  relationship  between  the  magnet  current  and  the                   
parameter   was  established.  The  data  set  was  extended  to  include  He +  and  He 2+  ions  of  differing  energies  and   q2

Em                   
final  charge  states  with  confidence  based  on  the  manufacturer's  stated  settings  in  the  source  operations  manual.  The                   
relationship  was  refined  and  next  O + ,  O 2+ ,  and  O 3+  ions  (from  atomic  O  from  the  source)  were  added  to  the  data  set.                        
The   current   versus     relationship   predicted   the   currents   for   various   final   energies   and   final   charge   states   with  q2

Em  
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TABLE   1 .    A   summary   of   the   various   ion,   charge   state,   and   kinetic   energy   from   this   investigation.    In   those   cases   where   a   range   
of   energies   is   given,   the   typical   step   size   in   the   accelerator   terminal   voltage   was   100   keV.    Also   given   is   the     factor   from   Eq.2  q2

Em  
that   is   necessary   to   compare   the   currents   for   diverse   ions.   

  

  
  

  

FIGURE   3.     Current   in   the   dipole   bending   magnet   for   various   beams   species.    The   legend   shows   the   variety   of   initial   and   final   
ions,   charge   states,   and   molecular   species.    The   x   axis,   ,   was   chosen   to   account   for   the   obvious   main   dependencies   on   mass  q2

Em  
and   charge   state   allowing   all   the   data   to   be   presented   on   a   single   plot.    Statistical   uncertainties   are   smaller   than   the   symbol   size.   

(Color   online)   

Post-source   Final   
Beam   

Final   Energy  
(MeV)   

m q  E / 2  
(MeV × A/Z 2 )   

Magnet   Current   
(A)   

H -   H +   1.67-3.53   1.67-3.53   8.56-12.71   
He -   He +   1.68-3.33   6.71-13.33   17.41-24.79   
  He 2+   2.51-5.30   2.51-5.30   10.58-15.60   

NH -   N +   2.01-3.01   29.15-42.18   36.28-44.26   
  N 2+   3.65   12.79   24.19   
  N 3+   4.89   7.62   18.59   

NH 2 
-   N +   1.95-2.92   27.34-40.91   35.58-44.37   

  N 2+   3.58   12.54   23.91   
O -   O +   2.50   39.93   43.73   
  O 2+   2.50-5.29   9.98-21.15   21.24-31.44   
  O 3+   3.23-7.05   5.91-12.53   16.31-24.05   

OH -   O +   2.42   38.76   43.02   
  O 2+   2.45-5.18   9.79-20.74   21.01-31.12   
  O 3+   3.27-6.94   5.28-12.34   16.13-23.85   

  
reasonable  accuracy  and  the  actual  measurements  were  added  to  the  data  set.  Next,  nitrogen  ions  (N + ,  N 2+ ,  and  N 3+ )                     
from  source  ions  of  imidogen  (NH - )  were  predicted  (Eq.  4)  and  measured  with  good  accuracy.  At  this  point,  weaker                     
beams  of  N  and  O  from  molecular  source  ions  of  amidogen  (NH 2 )  and  hydroxide  (OH)  were  predicted  and                    
measured.  No  appreciable  amount  of  N -  from  the  ion  source  was  observed.  The  final  relationship  was  fit  as  shown                     
in  Fig.  3.  The  excellent  agreement  between  data  and  the  overall  model  indicates  that  usable  N  beams  were                    
produced,   accelerated,   and   properly   identified.     

Specific   ion   source   settings   are   given   in   Table   2.    For   He   measurements,   standard   He   was   used   as   the   source   gas.     
  

TABLE   2.     Ion   source   settings   for   the   variety   of   species   produced   by   the   ion   source.   
  

  
For  all  other  cases,  the  source  gas  was  1%  nitrogen  gas  added  to  the  normal  hydrogen  source  gas.  The  impact  of                       
varying  this  ratio  was  not  investigated.  This  small  admixture  of  N  did  not  noticeably  change  the  performance  of  the                     
source  when  extracting  H.  It  was  unnecessary  to  add  oxygen  since  residual  oxygen  is  prevalent  enough  in  the                    
system  simply  from  oxygen  and  water  vapor  introduced  into  the  source  when  maintenance  is  done.  (The  leak  rate  is                     
low  enough  that  the  oxygen  beams  decrease  significantly  in  intensity  during  the  weeks  following  source  openings.)                  
NEC  recommends  an  aluminum  canal  for  the  production  of  hydrogen  ions  and  the  same  canal  was  in  place  when                     
extracting  imidogen  and  amidogen  from  the  source.  It  was  necessary  to  adjust  the  velocity  selector,  located  between                   
the  ion  source  and  accelerator,  to  find  maximum  beam  each  time  a  different  species  was  being  extracted  from  the                    
source.  Additionally,  a  vertical  steerer  and  Einzel  lens  (also  located  between  the  source  and  accelerator)  were                  
adjusted  but  required  only  minimal  changes.  The  values  of  the  other  source  parameters  are  given  in  Table  2.  The                     
source   gas   pressure   set   to   the   nominal   value   given   by   the   manufacturer   in   all   cases,   3x10 -6    Torr.   ̃  

C ONCLUSION   

The  ion  species  imidogen  (NH - ),  amidogen  (NH 2 
- ),  O - ,  and  hydroxide  (OH - )  species  were  produced  using  an                  

NEC  Alphatross  charge  exchange  source  by  incorporating  1%  nitrogen  into  the  hydrogen  feed  gas.  Imidogen,                 
amidogen,  and  hydroxide  molecules  dissociate  in  the  center  of  the  accelerator  terminal  in  the  gas  stripper.  Atomic  N -                    
ions   were   not   produced   at   a   detectable   level   as   expected.   

The  measurements  are  well  described  by  the  assumed  mathematical  model.  Additionally,  hysteresis  was  taken                
into  account  and  analyzed  for  the  dipole  bending  magnet.  These  beams  have  the  potential  for  nitrogen  implantation                   
and   creating   nitrogen   vacancies   in   diamond   and   other   crystalline   materials.   
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Em  
that   is   necessary   to   compare   the   currents   for   diverse   ions.   
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ions,   charge   states,   and   molecular   species.    The   x   axis,   ,   was   chosen   to   account   for   the   obvious   main   dependencies   on   mass  q2
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and   charge   state   allowing   all   the   data   to   be   presented   on   a   single   plot.    Statistical   uncertainties   are   smaller   than   the   symbol   size.   
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Abstract.  A  Sagnac  interferometer  splits  an  incident  beam  of  light  into  two  components  which  travel  in  opposite                   
directions  of  the  same  path.  Consequently,  each  beam  travels  an  equivalent  distance.  However,  by  rotating  the  entire                   
apparatus  at  a  sufficient  speed,  a  noticeable  change  in  the  beams’  interference  pattern  is  observed.  This  pattern  results                    
from  one  beam  travelling  against  rotation  and  the  other  travelling  with  rotation,  resulting  in  an  increase  or  decrease  in                     
apparent  path  length,  respectively.  This  is  known  as  the  Sagnac  Effect.  By  using  a  traditional  mirror-and-laser                  
interferometer  setup  and  a  large  turntable,  we  demonstrate  the  Sagnac  Effect  by  showing  that  a  given  angular  velocity                    
results   in   a   phase   shift   which   matches   what   is   predicted.   

INTRODUCTION     

When  first  learning  about  the  consequences  of  relativity,  it  is  useful  to  understand  the  experiments  which  led  to                    
its  inevitable  acceptance.  A  major  cornerstone  in  this  history  is  the  initial  hypothesis  of  a  luminous  ether  with  its                     
eventual  rejection.  While  the  Michelson-Morley  experiment  is  frequently  demonstrated  at  the  undergraduate  level,               
the  Sagnac  effect  also  provides  powerful  evidence  for  a  lack  of  an  ether  (even  without  addressing  relativity).  This                    
paper  intends  to  demonstrate  an  undergraduate  experiment  with  a  Sagnac  interferometer  alongside  the               
interpretations   which   can   be   drawn   from   such   experimentation.   

In  the  19 th  century,  Maxwell’s  formulations  of  electromagnetic  theory  alongside  Young  and  Fresnel’s  revival  of                 
Huygens’  light  wave  propagation  theory  created  the  working  assumption  that  there  must  be  an  ether  through  which                   
electromagnetic  waves  propagate. 1  Experiments  such  as  the  Michelson-Morley  and  Sagnac  interferometers  were              
developed  to  measure  the  speed  of  the  hypothesized  ether  relative  to  the  Earth.  When  Michelson  and  Morley  failed                    
to  find  a  nonzero  speed  measurement  for  the  ether,  an  alternative  hypothesis  was  proposed  that  the  Earth  drags  the                     
ether  (and  so  the  ether  would  appear  stagnant  to  the  Earth). 2  While  Michelson  and  Morley  found  unpredicted  results,                    
Georges  Sagnac  successfully  demonstrated  his  predicted  “optical  rotation  effect”  and  believed  it  to  be  a  “direct                  
observation  of  the  luminous  ether.” 3  One  of  the  underlying  assumptions  to  the  Sagnac’s  calculations,  however,  is  that                   
the  ether  is  not  dragged  along  by  the  interferometer. 3,4  The  Sagnac  experiment  together  with  the  Michelson-Morley                  
experiment  poses  a  contradiction:  the  ether  must  not  be  dragged  to  produce  the  positive  result  in  the  Sagnac                    
interferometer,  but  it  simultaneously  needs  to  be  dragged  to  produce  the  null  result  in  the  Michelson-Morley                  
interferometer. 5  These  experiments  alongside  several  others  have  failed  to  provide  evidence  for  an  ether;  henceforth,                 
the   current   belief   is   that   light   does   not   require   a   medium. 2   
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from  one  beam  travelling  against  rotation  and  the  other  travelling  with  rotation,  resulting  in  an  increase  or  decrease  in                     
apparent  path  length,  respectively.  This  is  known  as  the  Sagnac  Effect.  By  using  a  traditional  mirror-and-laser                  
interferometer  setup  and  a  large  turntable,  we  demonstrate  the  Sagnac  Effect  by  showing  that  a  given  angular  velocity                    
results   in   a   phase   shift   which   matches   what   is   predicted.   
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eventual  rejection.  While  the  Michelson-Morley  experiment  is  frequently  demonstrated  at  the  undergraduate  level,               
the  Sagnac  effect  also  provides  powerful  evidence  for  a  lack  of  an  ether  (even  without  addressing  relativity).  This                    
paper  intends  to  demonstrate  an  undergraduate  experiment  with  a  Sagnac  interferometer  alongside  the               
interpretations   which   can   be   drawn   from   such   experimentation.   

In  the  19 th  century,  Maxwell’s  formulations  of  electromagnetic  theory  alongside  Young  and  Fresnel’s  revival  of                 
Huygens’  light  wave  propagation  theory  created  the  working  assumption  that  there  must  be  an  ether  through  which                   
electromagnetic  waves  propagate. 1  Experiments  such  as  the  Michelson-Morley  and  Sagnac  interferometers  were              
developed  to  measure  the  speed  of  the  hypothesized  ether  relative  to  the  Earth.  When  Michelson  and  Morley  failed                    
to  find  a  nonzero  speed  measurement  for  the  ether,  an  alternative  hypothesis  was  proposed  that  the  Earth  drags  the                     
ether  (and  so  the  ether  would  appear  stagnant  to  the  Earth). 2  While  Michelson  and  Morley  found  unpredicted  results,                    
Georges  Sagnac  successfully  demonstrated  his  predicted  “optical  rotation  effect”  and  believed  it  to  be  a  “direct                  
observation  of  the  luminous  ether.” 3  One  of  the  underlying  assumptions  to  the  Sagnac’s  calculations,  however,  is  that                   
the  ether  is  not  dragged  along  by  the  interferometer. 3,4  The  Sagnac  experiment  together  with  the  Michelson-Morley                  
experiment  poses  a  contradiction:  the  ether  must  not  be  dragged  to  produce  the  positive  result  in  the  Sagnac                    
interferometer,  but  it  simultaneously  needs  to  be  dragged  to  produce  the  null  result  in  the  Michelson-Morley                  
interferometer. 5  These  experiments  alongside  several  others  have  failed  to  provide  evidence  for  an  ether;  henceforth,                 
the   current   belief   is   that   light   does   not   require   a   medium. 2   
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Beyond  its  applicability  in  refuting  the  ether,  the  Sagnac  effect  is  widely  used  in  navigational  systems  and                   
sensory  technologies.  Ring  laser  gyroscopes  use  a  system  of  mirrors  to  create  a  common  path  for  light  to  travel                     
around  (this  is  closely  comparable  to  the  Sagnac  interferometer  created  in  this  experiment)  while  fiber  optic                  
gyroscopes  control  the  path  of  light  with  fiber  optic  cables. 6  Placing  three  gyroscopes  orthogonal  to  each  other                   
allows  for  measurements  in  all  three  degrees  of  freedom  for  a  navigation  system. 6  The  Sagnac  effect  is  also  used  in                      
fiber  optic  current  sensors.  Optic  current  sensors  are  not  influenced  by  electromagnetic  interference,  and  so  they  are                   
advantageous  in  high  power  systems. 7  These  fiber  optic  sensors  are  also  sensitive  to  birefringence  effects  from                  
temperature   and   vibrations;   current   research   is   investigating   how   to   use   this   birefringence   for   sensory   applications. 8,9   

In  1921,  Paul  Langevin  provided  the  first  interpretation  of  the  Sagnac  effect  from  general  relativity. 10  His                  
derivations 10  for  a  rotating  Sagnac  interferometer  find  the  propagation  time  difference  between  the               
counterpropagating   waves   to   be:   

. t∆ = c2
4Aω (1)   

The   area   inside   the   beam   path   is   given   as   “A”,   and   the   difference   of   time   traveled   is   “∆t.”   In   the   following,   let    N    be   
the   number   of   fringes   that   pass   by.   

ϕ π∆N π π∆ = 2 = 2 (f t)* ∆ = 2 * λ
c

* c2
4Aω = cλ

8πωA (2)   
∆ϕ∴ = cλ

8πωA (3)   
  

The   above   relationship   gives   the   phase   difference   as   a   function   of   angular   velocity.     

T HE    E XPERIMENT   

To  demonstrate  the  Sagnac  effect,  this  experiment  uses  TeachSpin’s   Sagnac  interferometer. 11  The  basic  layout  of                 
the  interferometer  is  shown  in  Figure  1(a).  A  polarizing  beam-splitter  cube  (PBSC)  separates  an  incident                 
45º-linearly  polarized  beam  into  two  equal-power,  orthogonal   p -state  beams.  Each  beam  traverses  the  loop  in                 
opposing  directions  and  rejoins  at  the  original  PBSC.  These  component  beams  are  split  again  (not  shown  in  figure)                    
and  sent  into  two  separate  photodetectors  to  allow  for  further  analysis.  The  breadboard  the  interferometer  is  built                   
upon  has  urethane  pads  at  each  corner  to  reduce  ambient  vibrations  and  stiffening  beams  to  reduce  the  possibility  of                     
the   breadboard   deformation,   both   of   which   can   distort   the   final   images   of   the   beams.   

     

FIGURE   1 :   (a)   Sagnac   interferometer   design   detailed   by   TeachSpin. 11    (b)   Apparatus   utilized   in   experiment.   
  

This  interferometer  can  detect  shifts  in  the  thousandths  of  a  fringe  according  to  TeachSpin. 2  Introducing  motion                  
such  as  rotation  of  the  apparatus  results  in  wobbling  and  stray  air  currents  which  cause  shifts  that  exceed  this  value;                      
around  one  to  two-thousandths  of  a  fringe  depending  on  speed.  The  Sagnac  effect,  summarized  mathematically  in                  
Equation  3,  will  not  exceed  this  value  at  lower  angular  velocities  and  smaller  areas  and  will  be  indistinguishable                    
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from  it.  With  a  small  area  of  0.274  m 2  and  a  wavelength  of  633  nm  but  a  high  angular  velocity  of  2.75  rad/s  the                          
calculated  shift  from  the  Sagnac  effect  is  one  hundredth  of  a  fringe;  one  magnitude  higher  than  the  shifts  from  other                      
effects   and   enough   to   clearly   demonstrate   the   Sagnac   effect   in   action.   

The  combination  of  the  interferometer’s  weight,  size,  and  required  angular  velocity  require  the  use  of  an                  
industrial  turntable.  It  offers  the  ability  to  rotate  at  high  speeds  and  can  support  any  weight  within  the  scope  of  this                       
experiment.  A  Vernier  angular  velocity  detector  which  is  mounted  above  the  center  of  the  turntable  and  fixed  so  that                     
the  turntable  will  turn  the  disk  in  the  detector,  providing  for  reliable  measurements  of  .  This  detector  is  capable  of                ω       
measurements  with  a  precision  of  0.109  rad/s.  Two  photodetectors  measure  the  relative  intensity  of  the  two  beams                   
after  they  undergo  the  Sagnac  effect.  The  laser’s  electronics  box  (supplied  by  TeachSpin)  supplies  power  to  the  laser                    
and  the  photodetectors.  An  oscilloscope  will  record  the  signals  from  the  photodetectors.  The  final  apparatus  is                  
shown   in   Figure   1(b).   

The  laser  is  run  for  thirty  minutes  before  running  trials  to  minimize  power  fluctuations  resulting  from  increasing                   
temperatures.  Each  trial  runs  for  twenty  seconds.  The  first  five  seconds  are  for  measuring  the  voltages  of  each                    
photodetector’s  signal  while  the  interferometer  is  stationary.  The  remaining  fifteen  seconds  involve  measuring  these                
voltages   while   the   interferometer   rotates   at   various   velocities.   Each   run   is   then   analyzed   by   the   methodology   below.   

The  rotational  phase  difference  is  the  difference  of  each  photodetector’s  output  voltage  while  the  system  rotates.                  
Note  that  this  value  changes  as  rotational  velocity  changes.  The  sum  of  these  two  voltages  is  the  total  output  voltage                      
of  the  original  beam.  The  rotational  phase  difference  divided  by  the  total  original  output  voltage  determines  the                   
phase  shift.  These  values  are  then  averaged  across  all  trials  at  each  increment  of  velocity.  The  results  of  this  are                      
summarized  in  Table  1  (only  a  limited  range  is  shown).  Figure  2  shows  all  the  velocity  data  compared  to  the                      
predicted   change.     

  

This  data  is  correlated  with  predicted  values  in  ranges  1  rad/s  to  3  rad/s  due  to  the  relatively  low  effect  of  signal                        
disturbance  compared  to  the  Sagnac  effect.  An  angular  velocity  above  or  below  these  bounds  results  in  a  Sagnac                    
effect  that  is  too  low  to  be  meaningfully  distinguished  from  experimental  sources  of  distortion  such  as  vibration  or                    
air  currents,  particularly  at  higher  velocities.  Therefore,  for  regions  where  the  angular  velocity  is  between  1  rad/s                   
and   3   rad/s   the   correlation   with   the   predicted   effect   offers   strong   evidence   for   the   Sagnac   effect.   

C ONCLUSION   

A  noticeable  correlation  of  the  measured  phase  shift  to  the  Sagnac  effect  is  observed.  Individual  data  points  and                    
tests  varied  from  expected  values  due  to  experimental  errors,  but  more  data  points  mitigated  these  deviations.  Due  to                    
the  nature  of  interferometry,  reducing  outside  and  systematic  interference  is  the  largest  challenge  of  this  experiment;                  

TABLE   1 :   Angular   Velocity   vs   Phase   Shift     
(Range   1.4180   rad/s   to   2.9450   rad/s).   

  

FIGURE   2 :   Predicted   Change   vs   Measured   Change   vs   Angular   
Velocity.   

  

Velocity   Measured   
Change   

Theoretical   
Change   

Percent   
Error   

1.4180   0.0538   0.0515   -4.5099   
1.5270   0.0569   0.0555   -2.5968   
1.6360   0.0616   0.0594   -3.7406   
1.7450   0.0586   0.0634   7.4958   
1.8540   0.0625   0.0673   7.1763   
1.9630   0.0660   0.0713   7.4747   
2.0730   0.0698   0.0753   7.2578   
2.1820   0.0739   0.0792   6.7110   
2.2910   0.0752   0.0832   9.6687   
2.4000   0.0838   0.0872   3.8539   
2.5090   0.0833   0.0911   8.6061   
2.6180   0.0872   0.0951   8.3249   
2.7270   0.0899   0.0990   9.2450   
2.8360   0.0931   0.1030   9.6303   
2.9450   0.0976   0.1069   8.7086   
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advantageous  in  high  power  systems. 7  These  fiber  optic  sensors  are  also  sensitive  to  birefringence  effects  from                  
temperature   and   vibrations;   current   research   is   investigating   how   to   use   this   birefringence   for   sensory   applications. 8,9   
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derivations 10  for  a  rotating  Sagnac  interferometer  find  the  propagation  time  difference  between  the               
counterpropagating   waves   to   be:   
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To  demonstrate  the  Sagnac  effect,  this  experiment  uses  TeachSpin’s   Sagnac  interferometer. 11  The  basic  layout  of                 
the  interferometer  is  shown  in  Figure  1(a).  A  polarizing  beam-splitter  cube  (PBSC)  separates  an  incident                 
45º-linearly  polarized  beam  into  two  equal-power,  orthogonal   p -state  beams.  Each  beam  traverses  the  loop  in                 
opposing  directions  and  rejoins  at  the  original  PBSC.  These  component  beams  are  split  again  (not  shown  in  figure)                    
and  sent  into  two  separate  photodetectors  to  allow  for  further  analysis.  The  breadboard  the  interferometer  is  built                   
upon  has  urethane  pads  at  each  corner  to  reduce  ambient  vibrations  and  stiffening  beams  to  reduce  the  possibility  of                     
the   breadboard   deformation,   both   of   which   can   distort   the   final   images   of   the   beams.   
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from  it.  With  a  small  area  of  0.274  m 2  and  a  wavelength  of  633  nm  but  a  high  angular  velocity  of  2.75  rad/s  the                          
calculated  shift  from  the  Sagnac  effect  is  one  hundredth  of  a  fringe;  one  magnitude  higher  than  the  shifts  from  other                      
effects   and   enough   to   clearly   demonstrate   the   Sagnac   effect   in   action.   

The  combination  of  the  interferometer’s  weight,  size,  and  required  angular  velocity  require  the  use  of  an                  
industrial  turntable.  It  offers  the  ability  to  rotate  at  high  speeds  and  can  support  any  weight  within  the  scope  of  this                       
experiment.  A  Vernier  angular  velocity  detector  which  is  mounted  above  the  center  of  the  turntable  and  fixed  so  that                     
the  turntable  will  turn  the  disk  in  the  detector,  providing  for  reliable  measurements  of  .  This  detector  is  capable  of                ω       
measurements  with  a  precision  of  0.109  rad/s.  Two  photodetectors  measure  the  relative  intensity  of  the  two  beams                   
after  they  undergo  the  Sagnac  effect.  The  laser’s  electronics  box  (supplied  by  TeachSpin)  supplies  power  to  the  laser                    
and  the  photodetectors.  An  oscilloscope  will  record  the  signals  from  the  photodetectors.  The  final  apparatus  is                  
shown   in   Figure   1(b).   

The  laser  is  run  for  thirty  minutes  before  running  trials  to  minimize  power  fluctuations  resulting  from  increasing                   
temperatures.  Each  trial  runs  for  twenty  seconds.  The  first  five  seconds  are  for  measuring  the  voltages  of  each                    
photodetector’s  signal  while  the  interferometer  is  stationary.  The  remaining  fifteen  seconds  involve  measuring  these                
voltages   while   the   interferometer   rotates   at   various   velocities.   Each   run   is   then   analyzed   by   the   methodology   below.   

The  rotational  phase  difference  is  the  difference  of  each  photodetector’s  output  voltage  while  the  system  rotates.                  
Note  that  this  value  changes  as  rotational  velocity  changes.  The  sum  of  these  two  voltages  is  the  total  output  voltage                      
of  the  original  beam.  The  rotational  phase  difference  divided  by  the  total  original  output  voltage  determines  the                   
phase  shift.  These  values  are  then  averaged  across  all  trials  at  each  increment  of  velocity.  The  results  of  this  are                      
summarized  in  Table  1  (only  a  limited  range  is  shown).  Figure  2  shows  all  the  velocity  data  compared  to  the                      
predicted   change.     
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A  noticeable  correlation  of  the  measured  phase  shift  to  the  Sagnac  effect  is  observed.  Individual  data  points  and                    
tests  varied  from  expected  values  due  to  experimental  errors,  but  more  data  points  mitigated  these  deviations.  Due  to                    
the  nature  of  interferometry,  reducing  outside  and  systematic  interference  is  the  largest  challenge  of  this  experiment;                  

TABLE   1 :   Angular   Velocity   vs   Phase   Shift     
(Range   1.4180   rad/s   to   2.9450   rad/s).   

  

FIGURE   2 :   Predicted   Change   vs   Measured   Change   vs   Angular   
Velocity.   

  

Velocity   Measured   
Change   

Theoretical   
Change   

Percent   
Error   

1.4180   0.0538   0.0515   -4.5099   
1.5270   0.0569   0.0555   -2.5968   
1.6360   0.0616   0.0594   -3.7406   
1.7450   0.0586   0.0634   7.4958   
1.8540   0.0625   0.0673   7.1763   
1.9630   0.0660   0.0713   7.4747   
2.0730   0.0698   0.0753   7.2578   
2.1820   0.0739   0.0792   6.7110   
2.2910   0.0752   0.0832   9.6687   
2.4000   0.0838   0.0872   3.8539   
2.5090   0.0833   0.0911   8.6061   
2.6180   0.0872   0.0951   8.3249   
2.7270   0.0899   0.0990   9.2450   
2.8360   0.0931   0.1030   9.6303   
2.9450   0.0976   0.1069   8.7086   
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things  as  small  as  vibrations  from  a  refrigerator  across  the  room  created  noticeable  shifts  in  data.  In  future                    
experiments  of  this  type,  it  is  recommended  to  consider  alternative  setups  that  would  reduce  the  effect  of  outside                    
interference  as  well  as  mitigate  risk  to  the  equipment  if  higher  rotational  speeds  are  desired.  Despite  these                   
limitations,  this  experiment  adequately  shows  the  lack  of  an  ether  through  the  no-ether  Sagnac  effect  applying  to  the                    
data.  We  encourage  the  use  of  this  experiment  in  undergraduate  laboratories  to  deepen  each  student’s  understanding                  
of   the   historical   breakthrough   that   shaped   how   physics   is   today.  
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Abstract.  We  present  a  numerical  technique  for  self-consistently  calculating  plasma  equilibria  with  prescribed  sources                
and  sinks  on  the  boundaries,  i.e.  a  scattering  system.  The  method  is  applied  to  the  earth’s  magnetotail.  The  method                     
follows  individual  particles  through  a  prescribed  magnetic  field,  while  calculating  the  density,  current  and  pressure  that                  
the  particle  contributes  on  a  uniformly  spaced  grid.  The  individual  particles  are  weighted  to  model  a  given  source                    
distribution  and  the  total  equilibrium  properties,  including  the  resulting  magnetic  field,  are  evaluated.  The  calculated  and                  
prescribed  magnetic  fields  are  then  compared.  If  the  fields  differ  significantly,  the  two  fields  are  mixed  and  the  process                    
repeated.   Convergence   to   the   self-consistent   field   typically   takes   between   100   and   150   iterations.   

I NTRODUCTION   

Determining  the  self-consistent  properties  of  a  plasma  equilibrium  is  typically  a  very  challenging  problem,  but  is                  
essential  for  determining  the  stability  and  wave  properties  in  the  plasma.  This  is  particularly  true  for  cases  where  the                     
scale  length  of  the  variations  in  the  plasma  are  on  the  order  of  the  ion  gyroradius  or  smaller.  One  common  method  is                        
to  choose  a  distribution  function  and  self-consistently  solve  the  Vlasov-Maxwell  equations  using  moments  of  the                 
distribution.  This  technique  has  produced  many  useful  results, 1-5  however  it  misses  the  effects  of  nonlinear/chaotic                 
particle  dynamics  on  the  distribution  function  and  resulting  equilibrium  and  stability.  Test  particle  simulations                
provide  an  alternative,  in  which  the  fields  are  assumed  to  be  known  and  a  distribution  of  particles  is  launched  from  a                       
source  region  and  pushed  through  the  given  fields. 6-9  Once  all  the  particles  in  a  source  distribution  have  moved                    
through  the  system,  the  total  average  density  (n),  current  ( j ),  pressure  tensor  ( Q ),  are  used  to  update  the  fields.  The                      
process  is  repeated  until  the  input  and  calculated  fields  are  in  agreement.  Test  particle  codes  are  well  suited  for                     
determining  equilibrium  solutions  with  good  spatial  resolution  using  a  relatively  small  number  of  particles,  but                 
cannot  yield  any  information  about  the  time  evolution  and  stability  of  the  calculated  equilibria.  The  resulting                  
equilibria  may  be  used  as  initial  conditions  for  Particle-in-Cell  simulations  that  can  evaluate  the  wave  and  stability                   
properties   of   the   system.   

T EST    PA RTICLE    S IMULATION   

A  fundamental  first  step  in  a  test  particle  code  is  to  compute  the  contributions  of  a  single  particle.  This  process  is                       
complicated  by  the  facts  that  the  particle  motion  is  in  general  chaotic  and  that  it  is  not  known  a  priori  how  long  a                         
particle  will  remain  in  the  calculation  region.  At  any  given  time,  however,  the  distribution  function  of  a  single                    
particle   is   formally   given   by   

  
 δ  f sp =  1

L Ω6 3
0

( L
r r(t)− ) δ ( Ω L0

v v(t)− ) (1)   
  

where   L  is  the  characteristic  scale  length  and   is  the  characteristic  frequency.  The  spatial  (velocity)  delta          Ω0          
function  is  three  dimensional  so  that  and  similar  for  the  velocity  space       δ δ   [ L

r r(t)− ] =  [ L
x x(t)− ] δ [ L

y y(t)− ] δ [ L
z z(t)− ]        
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things  as  small  as  vibrations  from  a  refrigerator  across  the  room  created  noticeable  shifts  in  data.  In  future                    
experiments  of  this  type,  it  is  recommended  to  consider  alternative  setups  that  would  reduce  the  effect  of  outside                    
interference  as  well  as  mitigate  risk  to  the  equipment  if  higher  rotational  speeds  are  desired.  Despite  these                   
limitations,  this  experiment  adequately  shows  the  lack  of  an  ether  through  the  no-ether  Sagnac  effect  applying  to  the                    
data.  We  encourage  the  use  of  this  experiment  in  undergraduate  laboratories  to  deepen  each  student’s  understanding                  
of   the   historical   breakthrough   that   shaped   how   physics   is   today.  
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delta  function.  For  our  work  on  the  current  sheet,  L  and   are  taken  to  be  the  initial  scale  length  of  the  assumed             Ω0             
field  and  the  cyclotron  frequency  in  the  asymptotic  magnetic  field.  The  first  three  moments  of  the  distribution                   
(density( n ),   current( j ),   and   pressure   ( Q ))   are   calculated   as     

v  δn (r, )ˆ t = ∫
 

 
f sp (r, , )v t d =  1

L3 (r (t))ˆ− r̂ (2)   

j f v  vδ (r, )ˆ t = q ∫
 

 
v sp (r, , )v t d =  

L2
qΩ0 ˆ (r (t))ˆ− r̂ (3)   

 . vf v vv δQ (r, )ˆ t = m ∫
 

 
v sp (r, , )v t d =  L

mΩ2
0 ˆ ˆ (r (t))ˆ− r̂ (4)   

  
Here  q  (m)  is  the  charge  (mass)  of  the  particle  and  we  have  defined  the  normalized  variables  and                  r L   ˆ = r/   

.  The  contribution  of  a  single  particle  to  the  equilibrium  quantities  is  obtained  by  averaging  instantaneous  Ω L  v̂ = v/ 0                 
values   along   the   trajectory   for   the   time,   T,   that   the   particle   is   in   the   system,   i.e.   
  

 ,  tW (r )̂ =  1
T ∫

T

0
W (r, t)ˆ  d (5)   

  
where  W  is  any  velocity  moment  (n,   j ,   Q )  and  in  general,  T  will  be  different  for  each  particle.  Assuming  that  we                        
calculate  the  particle  position  and  velocity  at  equally  space  time  intervals,   so  that  ,  we  may             tΔ    ΔtT = N    
approximate   the   integral   as   a   finite   sum.    Thus   
  

    ;    j      ;     Q  n (r )̂ = 1
L3 [ 1

N ∑
N

n=0
δr,rˆ n̂]   (r )̂ =

L2
qΩ0 δ[ 1

N ∑
N

n=0
v̂n r,rˆ n̂]   (r )̂ = L

mΩ2
0 v δ[ 1

N ∑
N

n=0
v̂n n̂ r,rˆ n̂] (6)   

  
where    is  the  normalized  position  (velocity)  at  the  n th  time  step  and  is  the  Kroneker  delta  function.  Since     (v )r̂n n̂             δr,rˆ n̂

      
the  moments  will  be  interpolated  onto  a  grid,  it  is  important  that  the  time  step  be  chosen  sufficiently  small  so  that  a                        
particle  does  not  cross  a  complete  grid  cell  in  a  single  step.  The  sums  in  the  square  brackets  are  easily  calculated  by                       
linearly  interpolating  the  values  at  each  step  onto  the  grid  points  that  bound  the  cell  the  particle  is  in  during  a                       
particular  step.  An  extra  (guard)  cell  adjacent  to  the  calculation  region  must  be  included  to  ensure  the  proper                    
contributions  of  the  moments  to  the  edge  grid  points.  In  principle  this  process  can  be  applied  in  1,  2,  or  3                       
dimensions.   

As  a  particular  example  of  the  test  particle  method,  we  consider  the  magnetotail  current  sheet  where  we  use  the                     
GSE  coordinate  system  with  its  origin  in  the  center  of  the  earth,  the  x-direction  is  in  the  direction  of  the  sun,  y  is  in                          
the  dawn  to  dusk  direction  and  z  is  normal  to  the  ecliptic.  In  this  system,  the  magnetic  field  is  given  by                       

  where   is  a  smoothly  varying  function  that  asymptotes  to  ±1  as   For  the  case  B  f (z L)x z  B =  0 / ˆ + Bz ˆ   (z L)  f /            →±∞.z     
,  this  is  the  well-known  modified  Harris  model.  The  field  is  taken  to  only  vary  in  the  z-direction,  (z L) tanh(z L)  f / =  /                   

since   the   scale   lengths   in   x   and   y   are   much   longer   than   L.     
To  calculate  the  equilibrium  profiles,  we  choose  the  ion  source  distribution  function  in  the  asymptotic  region  to                   

be   a   drifting   Maxwellian,   i.e     

 ef (v) = C − 2T
mv2

⊥− 2T
m v +v( ∥ D)2

(7)   
  

where  is  a  constant,  T  is  the  ion  temperature  and   is  the  drift  velocity  along  the  field  line  C            vD =  √ m
2εT =√ m

2Edrif t          
given  in  terms  of  the  fraction,   ε ,  of  the  thermal  energy  and  .  Once  a  particle  has  escaped  from  the  system,              TEdrif t = ε          
the  single  particle  moments  are  weighted  such  that  the  density  at  the  top  grid  point  due  to  that  incoming  particle  is                       
unity  to  ensure  that  each  particle  has  equal  weight  in  the  phase  space.  To  guarantee  that  a  particle  contributes                     
properly  to  the  top  grid  cell,  it  is  launched  two  gyro-radii  above  the  guard  cell  and  is  considered  to  have  left  the                        
system  when  the  absolute  value  of  the  z-position  reaches  a  distance  of  two  gyro-radii  above  the  launch  point.  Once                     
all  of  the  particles  have  been  added  together,  the  total  moments  are  weighted  such  that  the  height  integrated                    
y-current  density  produces  the  proper  change  in  the  x-component  of  the  magnetic  field  given  by   (i.e.  from  -1                 (z l)  f /     
to  +1).  The  total  calculation  may  be  greatly  speeded  up  if  we  assume  identical  particle  sources  above  and  below  the                      

current  sheet,  since  we  may  then  use  the  symmetry  of  the  system  to  only  launch  particles  from  either  above  or  below                       
the  current  sheet  and  then  reflect  the  moments  across  the  z=0  plane.  As  a  common  first  approximation,  we  assume                     
that  the  electrons  are  sufficiently  mobile  so  as  to  provide  a  neutralizing  background.  Non-symmetric  sources  may  be                   
modeled  by  launching  separate  distributions  from  either  side  of  the  current  sheet. 9  Once  a  new  magnetic  field  has                    
been  calculated,  it  is  compared  with  the  initial  field.  If  the  fields  are  in  agreement,  we  end  the  simulation,  if  not,  we                        
mix  the  old  and  new  fields  together  and  calculate  a  new  input  field.  We  typically  use  95%  old  field  and  5%  new  field                         
to  ensure  convergence,  but  as  a  general  rule,  for  smaller  drift  velocities  a  smaller  percentage  of  the  new  field  is                      
required.   

To  convert  a  calculated  equilibrium  in  code  variables  into  physically  meaningful  quantities  we  begin  by  defining                  
,  where   R E   is  the  radius  of  the  earth  and   σ  is  a  constant  to  be  determined.  Assuming  a  proton  plasma  and  RL = σ E                       

using  the  definitions  of  the  moments  above,  we  find  that  ,  where  is  the  calculated  density            .036  σ = 0 √( n0

n̂top )  n t̂op      

in  the  top  grid  cell  and   is  the  asymptotic  particle  density  measured  in  .  Furthermore,  the  asymptotic        n0         cm 3−     

magnetic  field  is  given  by   where  is  the  ion  temperature  measured  in  keV  and   is  the  ion       14.1  B0 =  √n Tt̂op
ˆ

n T0 0   T 0         T̂     

temperature  in  code  variables.  The  results  for  the  case            .35 cm , T keV , E .1T  and B .1Bn0 = 0 3−  0 = 5  drif t = 0 0 z = 0 0  
are  shown  in  Figure  1  (a)-(c).  The  field  looks  very  much  like  the  Harris-magnetic  field,  but  the  density  is  almost                      
constant   throughout   the   reversal.     

In  figure  1(d)  and  (e)  we  show  how  the  peak  in  the  current  density  and  the  scale  length  of  the  field  reversal  vary                         
as  a  function  of  the  drift  energy.  Higher  drift  energies  result  in  more  peaked  density  profiles  and  thinner  sheets.                     
These  properties  may  play  an  important  role  in  the  next  phase  of  the  project  where  we  allow  for  more  complex                      
electron  models.  For  example,  if  the  electrons  are  taken  as  a  Boltzmann  distribution,  the  short  scale  length  and                    
peaked   density   may   result   in   a   significant   electric   field   in   the   z-direction   that   will   in   turn   modify   the   ion   dynamics.   

  

FIGURE  1.  Example  results  from  the  code.  (a)-(c)  are  the  self-consistent  magnetic  field,  current  density  and  particle  density  for                     
the  case  in  which   .  Frames  (d)  and  (e)  show  the  percentage  increase      .35 cm , T keV , E .1T  and B .1Bn0 = 0 3−  0 = 5  drif t = 0 0 z = 0 0          
in   the   peak   density   and   the   scale   length   of   the   field   reversal   as   a   function   of   the   drift   energy.   
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delta  function.  For  our  work  on  the  current  sheet,  L  and   are  taken  to  be  the  initial  scale  length  of  the  assumed             Ω0             
field  and  the  cyclotron  frequency  in  the  asymptotic  magnetic  field.  The  first  three  moments  of  the  distribution                   
(density( n ),   current( j ),   and   pressure   ( Q ))   are   calculated   as     

v  δn (r, )ˆ t = ∫
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Here  q  (m)  is  the  charge  (mass)  of  the  particle  and  we  have  defined  the  normalized  variables  and                  r L   ˆ = r/   

.  The  contribution  of  a  single  particle  to  the  equilibrium  quantities  is  obtained  by  averaging  instantaneous  Ω L  v̂ = v/ 0                 
values   along   the   trajectory   for   the   time,   T,   that   the   particle   is   in   the   system,   i.e.   
  

 ,  tW (r )̂ =  1
T ∫

T

0
W (r, t)ˆ  d (5)   

  
where  W  is  any  velocity  moment  (n,   j ,   Q )  and  in  general,  T  will  be  different  for  each  particle.  Assuming  that  we                        
calculate  the  particle  position  and  velocity  at  equally  space  time  intervals,   so  that  ,  we  may             tΔ    ΔtT = N    
approximate   the   integral   as   a   finite   sum.    Thus   
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where    is  the  normalized  position  (velocity)  at  the  n th  time  step  and  is  the  Kroneker  delta  function.  Since     (v )r̂n n̂             δr,rˆ n̂

      
the  moments  will  be  interpolated  onto  a  grid,  it  is  important  that  the  time  step  be  chosen  sufficiently  small  so  that  a                        
particle  does  not  cross  a  complete  grid  cell  in  a  single  step.  The  sums  in  the  square  brackets  are  easily  calculated  by                       
linearly  interpolating  the  values  at  each  step  onto  the  grid  points  that  bound  the  cell  the  particle  is  in  during  a                       
particular  step.  An  extra  (guard)  cell  adjacent  to  the  calculation  region  must  be  included  to  ensure  the  proper                    
contributions  of  the  moments  to  the  edge  grid  points.  In  principle  this  process  can  be  applied  in  1,  2,  or  3                       
dimensions.   

As  a  particular  example  of  the  test  particle  method,  we  consider  the  magnetotail  current  sheet  where  we  use  the                     
GSE  coordinate  system  with  its  origin  in  the  center  of  the  earth,  the  x-direction  is  in  the  direction  of  the  sun,  y  is  in                          
the  dawn  to  dusk  direction  and  z  is  normal  to  the  ecliptic.  In  this  system,  the  magnetic  field  is  given  by                       

  where   is  a  smoothly  varying  function  that  asymptotes  to  ±1  as   For  the  case  B  f (z L)x z  B =  0 / ˆ + Bz ˆ   (z L)  f /            →±∞.z     
,  this  is  the  well-known  modified  Harris  model.  The  field  is  taken  to  only  vary  in  the  z-direction,  (z L) tanh(z L)  f / =  /                   

since   the   scale   lengths   in   x   and   y   are   much   longer   than   L.     
To  calculate  the  equilibrium  profiles,  we  choose  the  ion  source  distribution  function  in  the  asymptotic  region  to                   

be   a   drifting   Maxwellian,   i.e     

 ef (v) = C − 2T
mv2

⊥− 2T
m v +v( ∥ D)2

(7)   
  

where  is  a  constant,  T  is  the  ion  temperature  and   is  the  drift  velocity  along  the  field  line  C            vD =  √ m
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given  in  terms  of  the  fraction,   ε ,  of  the  thermal  energy  and  .  Once  a  particle  has  escaped  from  the  system,              TEdrif t = ε          
the  single  particle  moments  are  weighted  such  that  the  density  at  the  top  grid  point  due  to  that  incoming  particle  is                       
unity  to  ensure  that  each  particle  has  equal  weight  in  the  phase  space.  To  guarantee  that  a  particle  contributes                     
properly  to  the  top  grid  cell,  it  is  launched  two  gyro-radii  above  the  guard  cell  and  is  considered  to  have  left  the                        
system  when  the  absolute  value  of  the  z-position  reaches  a  distance  of  two  gyro-radii  above  the  launch  point.  Once                     
all  of  the  particles  have  been  added  together,  the  total  moments  are  weighted  such  that  the  height  integrated                    
y-current  density  produces  the  proper  change  in  the  x-component  of  the  magnetic  field  given  by   (i.e.  from  -1                 (z l)  f /     
to  +1).  The  total  calculation  may  be  greatly  speeded  up  if  we  assume  identical  particle  sources  above  and  below  the                      

current  sheet,  since  we  may  then  use  the  symmetry  of  the  system  to  only  launch  particles  from  either  above  or  below                       
the  current  sheet  and  then  reflect  the  moments  across  the  z=0  plane.  As  a  common  first  approximation,  we  assume                     
that  the  electrons  are  sufficiently  mobile  so  as  to  provide  a  neutralizing  background.  Non-symmetric  sources  may  be                   
modeled  by  launching  separate  distributions  from  either  side  of  the  current  sheet. 9  Once  a  new  magnetic  field  has                    
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required.   

To  convert  a  calculated  equilibrium  in  code  variables  into  physically  meaningful  quantities  we  begin  by  defining                  
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ˆ
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temperature  in  code  variables.  The  results  for  the  case            .35 cm , T keV , E .1T  and B .1Bn0 = 0 3−  0 = 5  drif t = 0 0 z = 0 0  
are  shown  in  Figure  1  (a)-(c).  The  field  looks  very  much  like  the  Harris-magnetic  field,  but  the  density  is  almost                      
constant   throughout   the   reversal.     

In  figure  1(d)  and  (e)  we  show  how  the  peak  in  the  current  density  and  the  scale  length  of  the  field  reversal  vary                         
as  a  function  of  the  drift  energy.  Higher  drift  energies  result  in  more  peaked  density  profiles  and  thinner  sheets.                     
These  properties  may  play  an  important  role  in  the  next  phase  of  the  project  where  we  allow  for  more  complex                      
electron  models.  For  example,  if  the  electrons  are  taken  as  a  Boltzmann  distribution,  the  short  scale  length  and                    
peaked   density   may   result   in   a   significant   electric   field   in   the   z-direction   that   will   in   turn   modify   the   ion   dynamics.   

  

FIGURE  1.  Example  results  from  the  code.  (a)-(c)  are  the  self-consistent  magnetic  field,  current  density  and  particle  density  for                     
the  case  in  which   .  Frames  (d)  and  (e)  show  the  percentage  increase      .35 cm , T keV , E .1T  and B .1Bn0 = 0 3−  0 = 5  drif t = 0 0 z = 0 0          
in   the   peak   density   and   the   scale   length   of   the   field   reversal   as   a   function   of   the   drift   energy.   
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Abstract.  Numerical  methods  of  physics  analysis  require  specialized  forms  of  programming  as  well  as  attention  to  issues                   
of  implementation.  PhysiCL  is  a  Python  package  that  aims  to  provide  general-purpose  tools  for  performing                 
OpenCL-accelerated  physics  simulations  with  ease.  PhysiCL  contains  a  Numpy-based  code  units  system,  a  set  of  generic                  
simulation  tools,  built-in  tools  for  photon  scattering,  tools  for  measuring  light  behavior,  and  tools  for  writing  new                   
OpenCL-based  simulation  features.  This  package  can  be  installed  via  PyPI  using   pip  install  physicl ,  and  found                  
on   GitHub   with   source   code   and   examples   at    https://github.com/bcwarner/physicl.     

I NTRODUCTION   

PhysiCL  is  a  Python  library  that  utilizes  OpenCL  to  accelerate  physics  simulations,  and  it  is  intended  to  make                    
writing  physics  simulations  easier  for  both  students  and  researchers.  Currently,  the  feature  set  is  designed  primarily                  
to  work  with  simulations  involving  light  scattering,  and  future  work  may  expand  it  beyond  this.  We  shall  examine                    
the  basic  usage  of  PhysiCL,  its  OpenCL  metaprogramming  tools,  its  code  units  system,  and  its  base  light  scattering                    
system.     

F EATURES   

Basic   Simulation   Operation   

FIGURE   1.    Outline   of   a   basic   simulation   conducted   using   PhysiCL.   (a)   Outline   of   a   general   simulation,   with   the   area   left   of   
the   dashed   line   showing   what   the   end   user   controls   and   the   right   showing   what   is   abstracted   away   from   the   end   user.   (b)   Outline   
of   the   operation   of   a    Step    in   PhysiCL.   A   Python   or   OpenCL   is   run   depending   on   whether   OpenCL   is   turned   on   by   the   user.   

  

  

  

(a)     (b)     

At  the  root  of  the  PhysiCL  package  is   Simulation .  It  is  primarily  defined  by  an   exit  condition ,  two  values                     
representing   and  ,  an  OpenCL  context  and  command  queue,  a  list  of   Object s  and  a  list  of   Step s.  When  we   t∆   t                   
call   start —which  will  call   run  on  a  separate  thread—some  setup  is  performed.  We  set   and   to  zero,  get  the                t   t∆      
starting  timestamp,  and  initialize  a  list  for  keeping  track  of  s  that  were  simulated.  Then,  while  the  exit  condition            t          
returns  false,  we  call   run  on  each   Step .  After  the  exit  condition  returns  true,  we  call   terminate  on  each   Step                      
for  it  to  perform  any  clean  up.  An  overview  of  this  process  appears  in  Fig.  1a.  Each   Step  utilizes  three  main                       
methods,   __init__ ,   run ,  and   terminate ,  as  well  as   __run_cl  and   __run_python .  The  first  is  used  to                  
initialize  the   Step ,  the  second  one  is  used  when  the  simulation  runs  each   Step ,  and  the  third  one  is  called  when                       
the  simulation  is  finished  running.  The  last  two  are  called  to  run  the  simulation  using  a  parallelized  OpenCL                    
implementation  or  native  Python  implementation,  which  allows  for  the  comparison  of  their  relative  performance.                
Users  who  wish  to  write  new   Step s  will  primarily  modify   __init__  and   run ,  in  addition  to  both   __run_cl                    
and   __run_python  if  such  a  comparison  is  desired.  An  overview  of  a  typical  process  the  latter  three  functions  are                     
used   in   is   shown   in   Fig   1b.   

There  are  two  primitive  steps  in  the  root  module  of  PhysiCL.  The  first,   UpdateTimeStep ,  is  initialized  with  a                    
function  that  takes  the  simulation  as  an  argument,  determines  what  should  be  and  updates   accordingly.  The            t Δ     t    
second,   MeasureStep ,  is  a  generic  class  for  measuring  the  states  of  simulations  that  subclasses  will  override  as                   
needed.  In  general,  users  will  extend   MeasureStep  or  one  of  its  subclasses  to  measure  behavior,  and  user                   
extensions  upon   Step  will  represent  state-altering  behavior.  Another   Step  worth  noting  is              
physicl.newton.NewtonianKinematicsStep ,  which  updates  the  position  of  objects  according  to  their            
velocity.   

OpenCL   and   Metaprogramming   

PhysiCL  relies  on  OpenCL  and  PyOpenCL 3  to  achieve  accelerated  computation,  and  uses  metaprogramming               
techniques—where  new  code  is  generated  dynamically—in  concert  to  provide  increased  speed  in  developing  and                
executing  simulations.  OpenCL  is  a  library  that  allows  for  parallel  computing  on  a  variety  of  devices,  using                   
programs  known  as   kernels. 1,2  Kernels  may  be  metaprogrammed  using  PhysiCL’s   CLProgram .   CLProgram              
represents  a  partially  written  OpenCL  kernel  as  well  as  the  Python  code  needed  to  provide  it  input  and  retrieve                     
output.  There  are  two  stages  to  metaprogramming  using   CLProgram .  OpenCL  kernels  must  be  compiled  before                 
they  are  used,  and  when  we  first  need  to  build  our  kernel,  we  call   build_kernel .  When  this  function  is  called,  a                       
completed  OpenCL  kernel  is  generated.  From  there,  we  can  call   run —which  is  done  from  within  a   Step —and  the                    
appropriate  Python  code  to  collect  input  data  and  run  the  kernel  will  be  generated.  After  the  kernel  finishes,  the                     
resulting   output   of   the   kernel   is   then   used   to   update   the   simulation   as   needed.   

Measurements   

FIGURE   2.    Three   examples   of   the    Measurement    class   demonstrating   dimensional   analysis   and   unit   conversions.   (a)   
Examples   of   binary   and   unary   operations.   (b)   Example   of   two   automatic   unit   conversions.   

  
This  subclass  of  Numpy’s   ndarray 7  represents  an  array  of  numbers  that  follows  the   code  units  scheme,  which                   

is  where  we  scale  units  up  or  down  to  avoid  floating  point  precision  loss.  Instances  of  this  class  are  initialized  with                       
two  parameters,   raw_value ,  and   units .   raw_value  can  be  another   ndarray ,  another   Measurement ,  or  a                
list  mixed  with  numbers  and  other   Measurement s.   units  is  a  string  representing  the  units  of  the  value,  which                    

 

  

(a)   (b)   
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function  that  takes  the  simulation  as  an  argument,  determines  what  should  be  and  updates   accordingly.  The            t Δ     t    
second,   MeasureStep ,  is  a  generic  class  for  measuring  the  states  of  simulations  that  subclasses  will  override  as                   
needed.  In  general,  users  will  extend   MeasureStep  or  one  of  its  subclasses  to  measure  behavior,  and  user                   
extensions  upon   Step  will  represent  state-altering  behavior.  Another   Step  worth  noting  is              
physicl.newton.NewtonianKinematicsStep ,  which  updates  the  position  of  objects  according  to  their            
velocity.   

OpenCL   and   Metaprogramming   

PhysiCL  relies  on  OpenCL  and  PyOpenCL 3  to  achieve  accelerated  computation,  and  uses  metaprogramming               
techniques—where  new  code  is  generated  dynamically—in  concert  to  provide  increased  speed  in  developing  and                
executing  simulations.  OpenCL  is  a  library  that  allows  for  parallel  computing  on  a  variety  of  devices,  using                   
programs  known  as   kernels. 1,2  Kernels  may  be  metaprogrammed  using  PhysiCL’s   CLProgram .   CLProgram              
represents  a  partially  written  OpenCL  kernel  as  well  as  the  Python  code  needed  to  provide  it  input  and  retrieve                     
output.  There  are  two  stages  to  metaprogramming  using   CLProgram .  OpenCL  kernels  must  be  compiled  before                 
they  are  used,  and  when  we  first  need  to  build  our  kernel,  we  call   build_kernel .  When  this  function  is  called,  a                       
completed  OpenCL  kernel  is  generated.  From  there,  we  can  call   run —which  is  done  from  within  a   Step —and  the                    
appropriate  Python  code  to  collect  input  data  and  run  the  kernel  will  be  generated.  After  the  kernel  finishes,  the                     
resulting   output   of   the   kernel   is   then   used   to   update   the   simulation   as   needed.   

Measurements   

FIGURE   2.    Three   examples   of   the    Measurement    class   demonstrating   dimensional   analysis   and   unit   conversions.   (a)   
Examples   of   binary   and   unary   operations.   (b)   Example   of   two   automatic   unit   conversions.   

  
This  subclass  of  Numpy’s   ndarray 7  represents  an  array  of  numbers  that  follows  the   code  units  scheme,  which                   

is  where  we  scale  units  up  or  down  to  avoid  floating  point  precision  loss.  Instances  of  this  class  are  initialized  with                       
two  parameters,   raw_value ,  and   units .   raw_value  can  be  another   ndarray ,  another   Measurement ,  or  a                
list  mixed  with  numbers  and  other   Measurement s.   units  is  a  string  representing  the  units  of  the  value,  which                    
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are  written  as  their  corresponding  symbol,  either  the  Python  power  symbol  (**)  or  a  caret  (^),  and  the  dimension  of                      
the   unit.   

The  scaling  process  starts  by  determining  what  units  are  being  used.  After  isolating  these  units,  they  are                   
recursively  converted  to  their  defining  units  until  they  have  been  reduced  to  the  7  fundamental  SI  units.  After  this,                     
we  convert  these  fundamental  units  to  the  code  scale  units. 4  Each  of  these  code  scale  units  carries  a  scaling  factor,                      
which  is  used  to  affect  the  scaling  of  all   Measurement s  that  rely  on  the  same  fundamental  units.  We  multiply  each                      
element  of  our  array  by  this  scale.  We  store  these  dimensions,  as  well  as  the  dimensions  of  the  original  units  used  for                        
use  whenever  a  string  representation  is  needed.  Each  of  the  7  fundamental  SI  units  can  be  scaled  up  or  down  using                       
set_code_scale ,  as  seen  in  Fig.  2a.  Currently,  it  is  designed  so  that  it  can  only  be  done  once,  before  any  related                       
modules  are  imported.  This  is  to  optimize  for  speed,  as  performing  checks  to  see  if  two   Measurement s  have  the                     
same  scale  can  be  costly;  however,  it  may  be  possible  to  use  something  akin  to  a  counter  to  keep  track  of  the  current                         
scale.  After  it  is  set  up,  it  may  be  operated  on  by  directly  calling  one  of  Numpy's   ufunc s—such  as                     
numpy.square 5 —or  by  utilizing  the  corresponding  Python  operator,  generating  results  with  the  appropriate              
underlying  units  and  scale,  as  seen  in  Fig.  2.  It  will  not  cancel  or  reduce  any  original  units  passed  to  it  for  speed;                         
however,   a   future   implementation   may   reduce   units   lazily   when   a   string   representation   is   needed.   

Photon   Scattering,   Measurement,   and   Generation   

  
FIGURE   3 .   An   example   simulation   involving   isotropic   scattering   around   an   approximation   of   the   upper   half   of   Earth’s   

atmosphere   with   a   photon   distribution   resembling   that   of   the   Sun,   as   well   as   output   displayed   in   matplotlib.   (a)   A   segment   of   the   
necessary   code   to   set   up   a   simulation   involving   a   beam   of   photons   being   scattered,   namely   the   creation   of    PhotonObject s   
drawn   from    planck_phot_distribution .   (b)   Another   segment   of   the   necessary   code   required   to   set   up   the   simulation,   

including   the   addition   of    Steps    and    PhotonObjects .   (c)   The   resulting   paths   of   a   beam   of   photons   as   they   travel   towards   an   
object   with   arbitrarily   high   density.   

  
Currently,  the  main  feature  of  this  package  are  the  tools  for  photon  scattering  and  measurement,  which  are  in  the                     

physicl.light  module.  It  includes   ScatterDeleteStep  and   ScatterIsotropicStep ,  which          
represent  photon  absorption  and  isotropic  scattering,  respectively.  It  also  includes   ScatterMeasureStep ,  which              
measures  photons  passing  through  specified  planes,   ScatterSignMeasureStep ,  which  measures  the  quantity             
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of  photons  with  a  positive/negative  sign  along  any  axis,  and   TracePathMeasureStep ,  which  tracks  the  path  a                  
photon   takes.   

The  first  class,   ScatterDeleteStep ,  represents  the  scattering  of  photons  as  if  they  were  being  absorbed  into                  
a  medium.  It  assumes  that  the  medium  has  a  specified  uniform  number  density,  ,  and  cross-sectional  area,               ntarg     

,  throughout  the  entire  simulation  space.  When  this  step  is  run,  it  finds  all   PhotonObjects   within  the  Atarg                  
simulation,  and  collects  the  s  for  all  photons.  It  also  generates  a  random  number  in   for  each  photon,  and      rΔ            0, )[ 1      
allocates  two  lists,  one  pointing  to  the  photons  examined,  and  another  for  the  results  of  the  OpenCL  kernel  it  will                      
run.  The  kernel  will  find  ,  and  if   is  greater  than  the  random  number  generated  for  a       A ΔrP coll = ntarg targ    P coll           
particular  photon,  then  it  will  be  marked  for  removal.  After  the  OpenCL  kernel  returns,  the  marked  photons  are                    
deleted   from   the   simulation.   

ScatterIsotropicStep  represents  the  scattering  of  photons  as  if  they  were  being  refracted  into  a  random                 
direction.  Like   ScatterDeleteStep  it  assumes  a  consistent   and   throughout  the  entire  simulation,         ntarg   Atarg      
however  the   may  be  varied  with  an  OpenCL  expression,  and  if  the  user  desires,  scattering  may  also  be    ntarg                  
dependent  on  the  wavelength,  as  occurs  with  Rayleigh  scattering.  When  this   Step  is  run  it  first  collects  the   for                    r∆   
each  photon.  It  then  generates  a  random   that  will  be  used  to  derive  a  new  direction  for  the         ∈[0, π), ∈[0, )  θ 2 ϕ π             
photon  to  go,  and  a  random  number   rand  .  Next,  it  collects  the  original   for  the  photons;  if          0, )  ∈ [ 1       v→     
wavelength-dependent  scattering  is  on,  it  collects  each  ;  and  if  variable   is  on,  it  collects  the  current   of         Eγ     ntarg        r   
each  photon.  Then  when  the  kernel  is  completed,   ScatterIsotropicStep  will  apply  the  changes  calculated  in                 
the  kernel.  If  the  velocity  was  changed,  the  photon  will  have  its  .  An  example  of  this  in  use  can  be              vΔ ← vnew − vold          
seen   in   Fig.   3.   

ScatterMeasureStep  measures  the  total  quantity  of  photons  within  a  simulation,  as  well  as  the  number  and                  
energies  of  photons  that  pass  through  a  plane  at  a  given  point  in  time.  When  initialized,  the  user  may  decide  whether                       
they  want  the  total  quantity  of  objects  to  be  measured,  coordinates  for  the  planes  where  we  should  measure  photons                     
passing  through,  and  whether  the   ScatterDeleteStep  should  also  record  the  energies  of  the  photons  passing                 
through.   ScatterSignMeasureStep  measures  the  number  of  objects  within  a  simulation  as  well  as  the  number                 
of  objects  whose   have  values  greater  than  zero.   TracePathMeasureStep  tracks  the  position  of  each     , ,vx vy vz             
object  throughout  a  simulation.  When  this  step  is  run,  it  iterates  through  each  object  in  the  simulation  and  performs                     
several  steps.  If  the  current  object  in  the  iteration  does  not  have  a  unique  identifier,  it  assigns  one.                    
TracePathMeasureStep  then  records  the  starting  time,  creates  a  list  to  store  positions,  and  if  the  user  desires,                   
the  frequency  with  which  the  photon  changed  velocity.  Then,   TracePathMeasureStep  records  the  current               
position  of  the  object,  and  if  the  velocity  changes,  increments  the  accumulator  representing  the  frequency  of  velocity                   
changes.  After  the  simulation  is  complete,   TracePathMeasureStep  compiles  the  data  collected  into  a               
two-dimensional  array  representing  the  s  that  were  recorded,  with  each  row  represents  an  individual  object,  the      t             
number  of  times  its  velocity  changed  if  desired,  and  finally  all  positions  that  were  recorded  for  each  time.  An                    
example  of   TracePathMeasureStep  can  be  seen  in  Fig.  3,  where  its  output  data  is  graphed  to  show                   
atmospheric   refraction.   

In  addition  to  these  tools  to  simulate  and  measure  photons,  there  is   planck_phot_distribution ,  which                
randomly  generates  a  series  of  photon  energies  according  to  a  desired  segment  of  the  Planck  distribution.                  
planck_phot_distribution  works  by  finding  the  total  area  under  a  Planck  distribution  curve  for  a  desired                 
number  of  bins,  normalizing  the  total  area  under  these  bins  so  that  it  equals  1,  and  finally  randomly  picking  an                      
energy  bin  using  our  normalized  distribution.  There  are  also  two  other  ways  to  generate  photons.                 
generate_photons_from_E  takes  a  list  of   and  generates  new  photons  for  each  energy  given  with  a       Eγ            
velocity  of   in  the   direction.   generate_photons ,  takes  a  function  that  generates  random  numbers,    c    + x           
minimum   and   maximum   energies,   and   a   desired   number   of   photons,   and   returns   a   list   of    PhotonObjects .     
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are  written  as  their  corresponding  symbol,  either  the  Python  power  symbol  (**)  or  a  caret  (^),  and  the  dimension  of                      
the   unit.   

The  scaling  process  starts  by  determining  what  units  are  being  used.  After  isolating  these  units,  they  are                   
recursively  converted  to  their  defining  units  until  they  have  been  reduced  to  the  7  fundamental  SI  units.  After  this,                     
we  convert  these  fundamental  units  to  the  code  scale  units. 4  Each  of  these  code  scale  units  carries  a  scaling  factor,                      
which  is  used  to  affect  the  scaling  of  all   Measurement s  that  rely  on  the  same  fundamental  units.  We  multiply  each                      
element  of  our  array  by  this  scale.  We  store  these  dimensions,  as  well  as  the  dimensions  of  the  original  units  used  for                        
use  whenever  a  string  representation  is  needed.  Each  of  the  7  fundamental  SI  units  can  be  scaled  up  or  down  using                       
set_code_scale ,  as  seen  in  Fig.  2a.  Currently,  it  is  designed  so  that  it  can  only  be  done  once,  before  any  related                       
modules  are  imported.  This  is  to  optimize  for  speed,  as  performing  checks  to  see  if  two   Measurement s  have  the                     
same  scale  can  be  costly;  however,  it  may  be  possible  to  use  something  akin  to  a  counter  to  keep  track  of  the  current                         
scale.  After  it  is  set  up,  it  may  be  operated  on  by  directly  calling  one  of  Numpy's   ufunc s—such  as                     
numpy.square 5 —or  by  utilizing  the  corresponding  Python  operator,  generating  results  with  the  appropriate              
underlying  units  and  scale,  as  seen  in  Fig.  2.  It  will  not  cancel  or  reduce  any  original  units  passed  to  it  for  speed;                         
however,   a   future   implementation   may   reduce   units   lazily   when   a   string   representation   is   needed.   

Photon   Scattering,   Measurement,   and   Generation   

  
FIGURE   3 .   An   example   simulation   involving   isotropic   scattering   around   an   approximation   of   the   upper   half   of   Earth’s   

atmosphere   with   a   photon   distribution   resembling   that   of   the   Sun,   as   well   as   output   displayed   in   matplotlib.   (a)   A   segment   of   the   
necessary   code   to   set   up   a   simulation   involving   a   beam   of   photons   being   scattered,   namely   the   creation   of    PhotonObject s   
drawn   from    planck_phot_distribution .   (b)   Another   segment   of   the   necessary   code   required   to   set   up   the   simulation,   

including   the   addition   of    Steps    and    PhotonObjects .   (c)   The   resulting   paths   of   a   beam   of   photons   as   they   travel   towards   an   
object   with   arbitrarily   high   density.   

  
Currently,  the  main  feature  of  this  package  are  the  tools  for  photon  scattering  and  measurement,  which  are  in  the                     

physicl.light  module.  It  includes   ScatterDeleteStep  and   ScatterIsotropicStep ,  which          
represent  photon  absorption  and  isotropic  scattering,  respectively.  It  also  includes   ScatterMeasureStep ,  which              
measures  photons  passing  through  specified  planes,   ScatterSignMeasureStep ,  which  measures  the  quantity             
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of  photons  with  a  positive/negative  sign  along  any  axis,  and   TracePathMeasureStep ,  which  tracks  the  path  a                  
photon   takes.   

The  first  class,   ScatterDeleteStep ,  represents  the  scattering  of  photons  as  if  they  were  being  absorbed  into                  
a  medium.  It  assumes  that  the  medium  has  a  specified  uniform  number  density,  ,  and  cross-sectional  area,               ntarg     

,  throughout  the  entire  simulation  space.  When  this  step  is  run,  it  finds  all   PhotonObjects   within  the  Atarg                  
simulation,  and  collects  the  s  for  all  photons.  It  also  generates  a  random  number  in   for  each  photon,  and      rΔ            0, )[ 1      
allocates  two  lists,  one  pointing  to  the  photons  examined,  and  another  for  the  results  of  the  OpenCL  kernel  it  will                      
run.  The  kernel  will  find  ,  and  if   is  greater  than  the  random  number  generated  for  a       A ΔrP coll = ntarg targ    P coll           
particular  photon,  then  it  will  be  marked  for  removal.  After  the  OpenCL  kernel  returns,  the  marked  photons  are                    
deleted   from   the   simulation.   

ScatterIsotropicStep  represents  the  scattering  of  photons  as  if  they  were  being  refracted  into  a  random                 
direction.  Like   ScatterDeleteStep  it  assumes  a  consistent   and   throughout  the  entire  simulation,         ntarg   Atarg      
however  the   may  be  varied  with  an  OpenCL  expression,  and  if  the  user  desires,  scattering  may  also  be    ntarg                  
dependent  on  the  wavelength,  as  occurs  with  Rayleigh  scattering.  When  this   Step  is  run  it  first  collects  the   for                    r∆   
each  photon.  It  then  generates  a  random   that  will  be  used  to  derive  a  new  direction  for  the         ∈[0, π), ∈[0, )  θ 2 ϕ π             
photon  to  go,  and  a  random  number   rand  .  Next,  it  collects  the  original   for  the  photons;  if          0, )  ∈ [ 1       v→     
wavelength-dependent  scattering  is  on,  it  collects  each  ;  and  if  variable   is  on,  it  collects  the  current   of         Eγ     ntarg        r   
each  photon.  Then  when  the  kernel  is  completed,   ScatterIsotropicStep  will  apply  the  changes  calculated  in                 
the  kernel.  If  the  velocity  was  changed,  the  photon  will  have  its  .  An  example  of  this  in  use  can  be              vΔ ← vnew − vold          
seen   in   Fig.   3.   

ScatterMeasureStep  measures  the  total  quantity  of  photons  within  a  simulation,  as  well  as  the  number  and                  
energies  of  photons  that  pass  through  a  plane  at  a  given  point  in  time.  When  initialized,  the  user  may  decide  whether                       
they  want  the  total  quantity  of  objects  to  be  measured,  coordinates  for  the  planes  where  we  should  measure  photons                     
passing  through,  and  whether  the   ScatterDeleteStep  should  also  record  the  energies  of  the  photons  passing                 
through.   ScatterSignMeasureStep  measures  the  number  of  objects  within  a  simulation  as  well  as  the  number                 
of  objects  whose   have  values  greater  than  zero.   TracePathMeasureStep  tracks  the  position  of  each     , ,vx vy vz             
object  throughout  a  simulation.  When  this  step  is  run,  it  iterates  through  each  object  in  the  simulation  and  performs                     
several  steps.  If  the  current  object  in  the  iteration  does  not  have  a  unique  identifier,  it  assigns  one.                    
TracePathMeasureStep  then  records  the  starting  time,  creates  a  list  to  store  positions,  and  if  the  user  desires,                   
the  frequency  with  which  the  photon  changed  velocity.  Then,   TracePathMeasureStep  records  the  current               
position  of  the  object,  and  if  the  velocity  changes,  increments  the  accumulator  representing  the  frequency  of  velocity                   
changes.  After  the  simulation  is  complete,   TracePathMeasureStep  compiles  the  data  collected  into  a               
two-dimensional  array  representing  the  s  that  were  recorded,  with  each  row  represents  an  individual  object,  the      t             
number  of  times  its  velocity  changed  if  desired,  and  finally  all  positions  that  were  recorded  for  each  time.  An                    
example  of   TracePathMeasureStep  can  be  seen  in  Fig.  3,  where  its  output  data  is  graphed  to  show                   
atmospheric   refraction.   

In  addition  to  these  tools  to  simulate  and  measure  photons,  there  is   planck_phot_distribution ,  which                
randomly  generates  a  series  of  photon  energies  according  to  a  desired  segment  of  the  Planck  distribution.                  
planck_phot_distribution  works  by  finding  the  total  area  under  a  Planck  distribution  curve  for  a  desired                 
number  of  bins,  normalizing  the  total  area  under  these  bins  so  that  it  equals  1,  and  finally  randomly  picking  an                      
energy  bin  using  our  normalized  distribution.  There  are  also  two  other  ways  to  generate  photons.                 
generate_photons_from_E  takes  a  list  of   and  generates  new  photons  for  each  energy  given  with  a       Eγ            
velocity  of   in  the   direction.   generate_photons ,  takes  a  function  that  generates  random  numbers,    c    + x           
minimum   and   maximum   energies,   and   a   desired   number   of   photons,   and   returns   a   list   of    PhotonObjects .     
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Abstract.  A  methodology  for  imaging  the  dynamics  of  individual  microgel  particles  using  high  resolution  scanning                 
electron  microscopy  (SEM)  is  presented.  To  enable  this,  the  microgels  are  dispersed  in  an  ionic  liquid,  which  due  to  its                      
low  vapor  pressure  allows  them  to  remain  in  suspension  even  under  the  high  vacuum  conditions  present  in  a  typical                     
electron  gun.  Thus,  compared  with  conventional  electron  microscopy  studies  of  microgels,  no  sample  drying  or  freezing                  
is  necessary  which  preserves  their  morphology  while  also  allowing  to  probe  microgel  dynamics  in  solution.  The  results                   
based  on  the  individually  tracked  particles  are  compared  with  results  from  dynamic  light  scattering  (DLS)  which                  
measures  the  mean  size  and  diffusion  properties  of  large  collectives  of  particles.  For  the  size  measurements,  the  SEM  and                     
DLS  data  are  in  general  agreement.  For  the  particle  dynamics,  monitoring  individual  microgel  motion  reveals  complex                  
dynamics  in  which,  aside  from  the  expected  thermal  motion,  one  observes  effects  such  as  clustering,  rotation  and  drift.                    
This  is  in  contrast  with  a  control  sample  of  hard  sphere-like  silica  particles  where  the  motion  is  primarily  diffusional  in                      
good   agreement   with   DLS   studies.   
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interest  for  bio-sensing  and  drug  delivery  applications  [1].  The  experimental  data  on  the  size  and  dynamics  of  these                    
systems  is  typically  collected  using  optical  techniques,  such  as  dynamic  light  scattering  (DLS).  DLS  relies  on                  
averaging  data  collected  from  sample  volumes  containing  large  numbers  of  particles.  Thus,  these  methods  often                 
have  to  rely  on  the  approximation  of  dilute,  monodisperse  particles  of  a  certain  shape  (e.g.  spheres)  [2].  In  this                     
context  having  the  ability  to  observe  the  dynamics  of  individual  particles  is  particularly  important  for                 
multicomponent  systems,  assemblies  for  non-spherical  particles,  or  particles  that  have  complex  interactions  with               
their   environment.   

Electron  microscopy  methods  are  an  important  set  of  tools  used  for  the  characterization  of  micro-  and  nano-scale                   
systems,  owing  to  their  very  high  spatial  resolution.  They  have  been  used  in  previous  studies  to  characterize  the                    
morphology  and  size  of  microgel  particle  systems  [3].  One  has  to  note  though,  that  the  imaging  in  an  electron                     
microscope  requires  samples  that:  (i)  are  compatible  with  the  high  vacuum  conditions  in  an  electron  gun  required  to                    
prevent  the  scattering  of  the  electron  signal  and  electric  discharges;  (ii)  are  conductive  so  that  they  can  dissipate                    
charge  accumulation  due  to  beam  exposure;  and  (iii)  can  withstand  the  potential  thermal  damage  associated  with                  
exposure  to  the  high  energy  electron  beam.  For  the  microgel  example,  meeting  these  stringent  requirements  involves                  
drying  or  cryofreezing  the  samples.  This  might  change  microgel  morphology  [4],  and  more  importantly  prevents                 
studies   of   dynamics   of   their   motion   or   response   to   environmental   conditions.     

In  this  work,  an  alternative  sample  preparation  methodology  for  microgel  systems  has  been  explored,  enabling                 
their  high-resolution  imaging  in  a  scanning  electron  microscope  (SEM).  The  method  relies  on  dispersing  the  system                  
of  interest  (microgels)  in  an  ionic  liquid.  Owing  to  the  very  low  vapor  pressure  of  the  ionic  liquid  used  at  room                       
temperature,  even  under  the  high  vacuum  in  the  SEM,  the  suspension  remains  in  liquid  state.  Moreover,  the                   
electrical  and  thermal  conductivity  of  the  ionic  liquid  also  limits  sample  charging  and  thermal  damage.  This  allows                   
the  imaging  of  the  motion  of  individual  microgel  particles  in  conditions  similar  with  those  used  for  studying                   
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Abstract.  A  methodology  for  imaging  the  dynamics  of  individual  microgel  particles  using  high  resolution  scanning                 
electron  microscopy  (SEM)  is  presented.  To  enable  this,  the  microgels  are  dispersed  in  an  ionic  liquid,  which  due  to  its                      
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dynamics  in  which,  aside  from  the  expected  thermal  motion,  one  observes  effects  such  as  clustering,  rotation  and  drift.                    
This  is  in  contrast  with  a  control  sample  of  hard  sphere-like  silica  particles  where  the  motion  is  primarily  diffusional  in                      
good   agreement   with   DLS   studies.   
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dynamics  of  large  ensembles  of  microgels  using  DLS.  Aside  from  SEM  imaging  of  microgel  ionic  liquid  samples,                   
this   work   presents   SEM   results   for   a   control   sample   of   monodisperse   hard   sphere   silica   particles   in   ionic   liquid.   

E XPERIMENTAL    P ROCEDURE   

Hydroxypropylcellulose  (HPC)  microgels  were  synthesized  in  water  following  refs.  [2].  The  final  concentration               
of  microgels  in  the  aqueous  solution  was  2%  by  volume.  Following  the  synthesis,  the  microgels  were  dispersed  in                    
the  ionic  liquid  using  equal  amounts  of  stock  solution  and  ionic  liquid.  The  mixture  was  purged  with  dry  N 2   for  24  to                        
72  hours.  In  the  process  the  water  evaporated,  while  the  mass  of  the  solution  was  monitored,  resulting  in  a  microgel                      
suspension  in  ionic  liquid  of  2%  by  volume.  The  ionic  liquid  used  in  this  study  was  1-n-Butyl-3-methylimidazolium                   
(98%  purity,  Sigma  Aldrich),  chosen  to  maximize  the  mutual  solubility  of  the  ionic  liquid  with  that  of  water  [5].  A                      
control  sample  of  silica  monodispersed  microspheres  (Cospheric  LLC,  890  nm  SiO 2 )  in  ionic  liquid  was  prepared                  
with   the   same   volume   concentration.   

Solutions  of  the  microgels  in  both  water  and  ionic  liquid  were  characterized  using  DLS  setup  described  in  ref.                    
[6].  Figure  1  shows  the  temperature  dependence  of  microgel  hydrodynamic  diameter  (2R H )  in  ionic  liquid  and  water.                   
While  ionic  liquid  DLS  runs  are  noisier,  the  measured  2R H  in  ionic  liquid  agrees  well  with  the  2R H  in  water  below                       
the  microgel  phase  transition  temperature  (~41 o C).  The  larger  error  bars  in  the  ionic  liquid  are  indicative  of  stronger                    
thermal  fluctuations.  To  limit  thermal  effects  of  the  laser  beam  on  microgel  ionic  liquid  solution  all  of  the  DLS  data                      
was  collected  at  laser  powers  below  0.035  W.  Heating  the  samples  above  the  phase  transition  temperature,  i.e.  41 o C,                    
did  show  differences  between  the  water  and  ionic  liquid  suspensions,  as  the  microgels  showed  no  apparent                  
deswelling   in   ionic   liquid   while   deswelling   by   a   factor   of   2   in   diameter   in   water,   as   expected.     

  
To  prepare  samples  for  SEM  studies,  the  ionic  liquid  microgel  suspension  was  dispersed  ultrasonically  for  10                  

minutes,  and  then  a  1  μL  sample  drop  was  deposited  on  a  TEM  copper  grid.  The  excess  liquid  was  removed  using  a                        
piece  of  filter  paper  touched  to  the  side  of  the  grid,  leaving  the  ionic  liquid  film  as  membranes  suspended  in  the  grid                       
openings.  The  grid  was  then  mounted  on  a  standard  SEM  pin  holder  or  an  adaptor  holder  for  TEM  grids  (Ted  Pella                       
#16111  or  #15469).  The  imaging  was  done  at  room  temperature  in  a  field  emission  electron  microscope  Inspect  F50                    
(FEI).  It  was  observed  that  high  magnification,  high  acceleration  voltages,  and  long  exposure  resulted  in  the                  
crosslinking  of  the  ionic  liquid  leading  to  quenching  of  the  particle  dynamics.  To  mitigate  this,  the  acceleration                   
voltage   was   limited   to   2kV   and   the   diffusion   data   was   collected   for   less   than   1   minute   to   limit   the   overall   dose.   

R ESULTS     AND    D ISCUSSION   

SEM  imaging  of  the  particles  suspended  in  ionic  liquid  allowed  size  measurements  on  individual  particles.  The                  
secondary  electron  signal  is  used  for  imaging,  with  the  contrast  arising  mainly  from  the  topography  of  the  microgel                    
particles  rising  above  the  liquid  ion  –  vacuum  interface.  These  values  were  consistent  with  the  distribution  values                   
extracted  from  DLS  data.  Moreover,  the  actual  motion  of  individual  particles  could  be  monitored  over  times                  
sufficiently  long  to  observe  their  relevant  dynamics.  Figure  2a  shows  an  SEM  frame  snapshot  of  44  silica  particles,                    
the  control  sample.  Using  similar  time  stamped  frames,  the  time  evolution  of  the  x-  and  y-  position  coordinates  of                     

  
FIGURE   1.    Hydrodynamic   diameter   (2R H )   of   microgels   as   a   function   of   solution   temperature   in   water   and   ionic   liquid.     
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sufficiently  long  to  observe  their  relevant  dynamics.  Figure  2a  shows  an  SEM  frame  snapshot  of  44  silica  particles,                    
the  control  sample.  Using  similar  time  stamped  frames,  the  time  evolution  of  the  x-  and  y-  position  coordinates  of                     

  
FIGURE   1.    Hydrodynamic   diameter   (2R H )   of   microgels   as   a   function   of   solution   temperature   in   water   and   ionic   liquid.     
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the  particles  are  extracted  using  an  open  source  particle  tracking  package  (Tracker  5.0  [7]).  Figure  2b  shows  the                    
reconstructed   trajectories   for   the   44   particles   shown   in   Figure   2a   over   33   seconds.     

  

  
(a) (b)   

FIGURE   2.    (a)   Scanning   electron   microscopy   snapshot   of   silica   particles   in   ionic   liquid   (t   =   0   s).   (b)   Trajectories   of   the   44   
silica   particles   tracked   over   a   period   of   ~   33   seconds.   

  

FIGURE   3.    Time   dependence   of   the   average   mean   squared   displacement   for   the   silica   particles   imaged   in   Fig.   2.   The   dashed   line   
corresponds   to   the   expected   two-dimensional   Brownian   motion.   

  
The  data  collected  for  this  assembly  is  summarized  in  Figure  3  by  graphing  the  mean  square  displacement                    ∆r 〉  〈 →2  

of  the  collection  of  particles  as  a  function  of  time.  For  the  control  silica  particles  system,  the  resulting  dynamics  is                      
consistent  with  the  expectations  based  on  the  Stokes-Einstein  equation  (shown  in  Figure  3,   D =  )  for  thermal                 6R

k TB    
diffusion,  where  the  diffusion  constant   D  is  calculated  based  on  the  particle  hydrodynamic  radius   R  =  890  [nm]/2                    
and  the  measured  ionic  liquid  viscosity   η  at  room  temperature   T .  In  the  above  analysis,  the  motion  is  assumed  to  be                       
two-dimensional  as  the  secondary  electron  signal  used  for  imaging  originates  primarily  from  the  top  surface  of  the                   
sample,  and  thus  only  the  motion  of  particles  moving  along  the  ionic  liquid  –  vacuum  interface  could  be  captured.                     
This  approach  is  consistent  with  other  high-resolution  studies  of  hard-sphere  like  particles  suspended  in  ionic  liquids                  
[8].   

A  similar  procedure  was  followed  to  obtain  corresponding  data  sets  for  microgel  samples.  In  contrast  with  the                   
silica  samples  the  microgels  exhibit  more  complex  behavior,  which  deviates  from  simple  thermal  motion  and                 
includes  clustering,  rotational  diffusion,  and  drift.  Figure  4a,  shows  the  initial  positions  as  well  as  the  subsequent                   
motion  of  several  microgel  particles.  The  four  particles  in  the  lower-left  corner  have  convergent  trajectories  which  in                   
many  instances  leads  to  clustering,  where  particles  become  temporarily  attached  and  undergo  collective  motions.                
This  type  of  clustering  is  particularly  pronounced  in  regions  close  to  where  the  ionic  liquid  suspension  is  attached  to                     
the   copper   TEM   grid,   possibly   due   to   the   liquid   layer   being   thicker   near   the   grid.   
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(a)   (b)   

  
FIGURE   4.    (a)   Trajectories   of   microgels   tracked   over   ~45   seconds;   (b)   High   resolution   snapshots   of   the   translational   and   

rotational   motion   of   a   single   microgel   particle   and   on   left,   trajectory   of   the   particle   imaged.   
  

In  another  example  of  complex  motion,  Figure  4b  shows  a  series  of  high-resolution  snapshots  of  a  single                   
microgel  particle.  The  morphological  asymmetry  of  this  particle  allows  for  the  observation  of  its  rotational  motion                  
where  the  particle  undergoes  a  ~90 o  rotation  in  the  image  plane  over  4  seconds.  This  rotational  motion  is  also                     
accompanied  by  a  complicated  translational  motion,  in  which  the  particle  motion  is  localized  over  time  scales  on  the                    
order  of  10  seconds,  then  rapidly  drifts  to  another  region,  where  the  localized  motion  resumes.  An  analysis  of  the                     
mean  squared  displacement,  Figure  5,  finds  that  the  localized  motion  is  consistent  with  thermal  diffusion.  The                  
episodes  of  rapid  drift  sequences  interrupting  the  thermal  diffusion,  indicate  that  the  dynamics  of  this  system  is  quite                    
rich.  This  is  possibly  related  with  the  complex  microgel  morphology  and  their  more  complicated  interactions  with                  
the  environment.  The  observed  complex  microgel  dynamics  made  it  impossible  to  deduce  microgel  translational                
diffusion  coefficient  via  averaged  mean-squared  displacement  approach  used  for  silica  particles.  Additional  data  on                
particle-particle   and   particle-environment   interactions   is   needed   to   fully   understand   microgel   motion   in   ionic   liquid.   

C ONCLUSIONS   

We  have  demonstrated  that  high  resolution  imaging  of  particles  dispersed  in  an  ionic  liquid  can  be  a  very                    
powerful  tool  for  studying  their  structure  and  dynamics.  For  silica  systems  tracked  particle  motions  match  well  the                   
theoretical  assumptions  of  monodisperse  noninteracting  spherical  particles.  The  results  are  consistent  with  motion               
dominated  by  thermal  diffusion.  On  the  other  hand,  microgel  suspensions  show  significant  deviations  from  simple                 
Brownian  motion,  presumably  related  to  their  different  morphology  and  non-trivial  particle-particle  and              
particle-environment  interactions.  Future  work  will  focus  on  acquiring  data  to  uncover  these  relationships,  as  well  as                  
to   image   microgel   dynamics   under   changing   environmental   conditions,   such   as   temperature.   
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FIGURE   4.    (a)   Trajectories   of   microgels   tracked   over   ~45   seconds;   (b)   High   resolution   snapshots   of   the   translational   and   

rotational   motion   of   a   single   microgel   particle   and   on   left,   trajectory   of   the   particle   imaged.   
  

In  another  example  of  complex  motion,  Figure  4b  shows  a  series  of  high-resolution  snapshots  of  a  single                   
microgel  particle.  The  morphological  asymmetry  of  this  particle  allows  for  the  observation  of  its  rotational  motion                  
where  the  particle  undergoes  a  ~90 o  rotation  in  the  image  plane  over  4  seconds.  This  rotational  motion  is  also                     
accompanied  by  a  complicated  translational  motion,  in  which  the  particle  motion  is  localized  over  time  scales  on  the                    
order  of  10  seconds,  then  rapidly  drifts  to  another  region,  where  the  localized  motion  resumes.  An  analysis  of  the                     
mean  squared  displacement,  Figure  5,  finds  that  the  localized  motion  is  consistent  with  thermal  diffusion.  The                  
episodes  of  rapid  drift  sequences  interrupting  the  thermal  diffusion,  indicate  that  the  dynamics  of  this  system  is  quite                    
rich.  This  is  possibly  related  with  the  complex  microgel  morphology  and  their  more  complicated  interactions  with                  
the  environment.  The  observed  complex  microgel  dynamics  made  it  impossible  to  deduce  microgel  translational                
diffusion  coefficient  via  averaged  mean-squared  displacement  approach  used  for  silica  particles.  Additional  data  on                
particle-particle   and   particle-environment   interactions   is   needed   to   fully   understand   microgel   motion   in   ionic   liquid.   

C ONCLUSIONS   

We  have  demonstrated  that  high  resolution  imaging  of  particles  dispersed  in  an  ionic  liquid  can  be  a  very                    
powerful  tool  for  studying  their  structure  and  dynamics.  For  silica  systems  tracked  particle  motions  match  well  the                   
theoretical  assumptions  of  monodisperse  noninteracting  spherical  particles.  The  results  are  consistent  with  motion               
dominated  by  thermal  diffusion.  On  the  other  hand,  microgel  suspensions  show  significant  deviations  from  simple                 
Brownian  motion,  presumably  related  to  their  different  morphology  and  non-trivial  particle-particle  and              
particle-environment  interactions.  Future  work  will  focus  on  acquiring  data  to  uncover  these  relationships,  as  well  as                  
to   image   microgel   dynamics   under   changing   environmental   conditions,   such   as   temperature.   
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Abstract.  In  2011,  Mr.  Dan  Solomon  proposed  a  model  of  a  quantized  scalar  field  interacting  with  a  time-dependent                    
Mamaev-Trunov  potential  in  two-dimensional  Minkowski  spacetime.  This  model  is  governed  by  the  Klein-Gordon  wave                
equation  with  a  time-dependent  potential.  Mr.  Solomon  claims  that  this  model  violates  both  the  classical  energy                  
conditions  of  special  relativity  and  the  quantum  energy  conditions  of  quantum  field  theory  in  curved  spacetime.  Every                   
classical  energy  condition  can  be  violated,  and  their  natural  replacements  are  known  as  quantum  inequalities.  Mr.                  
Solomon  attempted  to  prove  violations  of  the  spatial  and  temporal  quantum  inequalities,  and  he  correctly  assumed  that                   
the  negative  energy  splits  into  two  fluxes  at  the  Cauchy  surface,  where  the  potential  is  turned  off.  Unfortunately,  Solomon                     
neglects  the  contribution  to  the  energy  density  due  to  particle  creation  when  the  potential  is  turned  off  at  time   t  =  0 .  In                         
this  project,  we  calculate  the  contribution  to  the  stress  energy  tensor  due  to  particle  creation.  We  show  that  while  the                      
classical   energy   conditions   are   violated,   the   quantum   energy   inequalities   hold,   contrary   to   Mr.   Solomon’s   statements.   

  
SCIENTIFIC   BACKGROUND   

  
Mathematical   Background   

  
The  mathematical  foundation  of  quantum  mechanics  consists  of  wave  functions  and  operators.  Wave  functions                

express  the  state  of  a  system  while  operators  represent  observables.  Linear  algebra  is  the  underlying  mathematics  of                   
quantum  mechanics,  where  abstract  vectors  represent  wave  functions  and  observables  are  performed  as  linear                
transformations  [1].  Quantum  mechanics  uses  Dirac  notation  to  represent  a  vector  as  a  ‘ket’,  shown  as  .  The  dual                  a⟩  ∣    
vector   for   a   ket   is   a   ‘bra’,   with   the   inner   product   ‘bra-ket’   written   as   .   a∣b〉  〈   

An  inner  product  space  is  a  vector  space  over  the  real  or  complex  numbers  containing  inner  products  or  dot                     
products.  The  vector  spaces  in  which  wavefunctions  exist  are  called  Hilbert  spaces.  Hilbert  spaces  are                 
finite-dimensional  and  span  the  complex  numbers  [2].  A  Hilbert  space  is  a  Banach  space  where  the  norm,  or                    
mapping,  is  an  inner  product.  Hilbert  spaces  are  mathematically  easier  to  handle  than  general  Banach  spaces  due  to                    
orthogonality.  A  Hilbert  space  is  a  complete  inner  product  space,  an  example  of  which  is  the  collection  of  square                     
integrable   functions,   

where dx ,f (x)  ∫
b

a
f (x)∣ ∣2 < ∞ (1)   

denoted  as  .  While  this  is  a  relatively  small  vector  space,  it  is  the  Hilbert  space  referred  to  in  quantum    (a, )L2 b                   
mechanics  [2].  The  calculations  in  this  paper  use  two-dimensional  Minkowski  spacetime.  This  refers  to  a  Euclidean                  
manifold,  with  one  spatial  dimension  and  one  temporal  dimension,  where  the  spacetime  interval  between  two  events                  
does   not   depend   on   an   inertial   frame   of   reference   in   which   the   events   were   measured.     

Another  mathematical  object  used  throughout  this  paper  is  a  tensor,  which  is  analogous  to  a  vector-composed                  
matrix.  Tensors  are  arrays  of  functions  of  spatial  coordinates.  The  most  common  tensor  in  this  paper  is  the                    
stress-energy   tensor,   with   the   general   form   of,   

 T (x,t)
ˆ = T  T  T  T  ( L

tt tx xt xx ) , (2)   
which  describes  the  density  and  flux  of  matter  and  energy  in  spacetime.  This  is  a  generalization  of  the  stress  tensor                      
of  Newtonian  physics.  In  general  relativity,  the  Einstein  tensor  describes  space-time  curvature  and  the  energy                 
momentum   tensor   describes   localized   matter   distribution.   
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f (x)∣ ∣2 < ∞ (1)   

denoted  as  .  While  this  is  a  relatively  small  vector  space,  it  is  the  Hilbert  space  referred  to  in  quantum    (a, )L2 b                   
mechanics  [2].  The  calculations  in  this  paper  use  two-dimensional  Minkowski  spacetime.  This  refers  to  a  Euclidean                  
manifold,  with  one  spatial  dimension  and  one  temporal  dimension,  where  the  spacetime  interval  between  two  events                  
does   not   depend   on   an   inertial   frame   of   reference   in   which   the   events   were   measured.     

Another  mathematical  object  used  throughout  this  paper  is  a  tensor,  which  is  analogous  to  a  vector-composed                  
matrix.  Tensors  are  arrays  of  functions  of  spatial  coordinates.  The  most  common  tensor  in  this  paper  is  the                    
stress-energy   tensor,   with   the   general   form   of,   

 T (x,t)
ˆ = T  T  T  T  ( L

tt tx xt xx ) , (2)   
which  describes  the  density  and  flux  of  matter  and  energy  in  spacetime.  This  is  a  generalization  of  the  stress  tensor                      
of  Newtonian  physics.  In  general  relativity,  the  Einstein  tensor  describes  space-time  curvature  and  the  energy                 
momentum   tensor   describes   localized   matter   distribution.   
  

Quantum   Field   Theory   
  

In  quantum  mechanics,  a  single  particle,  with  spin  =  ½,  has  two  quantum  states  in  a  two-state  system:  one  state                      
represented  as   and  the  other  as  .  In  the  Copenhagen  model  of  quantum  mechanics,  a  particle  exists  in  a    ↓⟩  = ∣      ↑⟩  = ∣              
state  of  superposition  where  the  particle  is  simultaneously  in  both  states.  The  superposition  wave  function  for  a                   
system   with   two   spatial   states,    A    and    B ,   can   be   written   as,   

ψ = 1
√2

∣↑⟩∣A⟩ ∣↓⟩∣B⟩[ +  ] . (3)  
A  wave  function  describes  the  state  of  a  particle.  While  a  particle  is  constrained  to  move  in  one  dimension,                     

influenced  by  a  specified  force,  a  wave  function  is  dependent  on  position  for  any  given  time.  Until  an  act  of                      
measurement  collapses  the  wave  function,  particles  do  not  have  specific  dynamical  properties  like  position  or                 
momentum  [1].  Upon  measurement  of  the  system,  the  wavefunction  spontaneously  decays  and  the  observer  sees  the                  
system  existing  in  only  one  of  the  two  states.  States  are  entangled  if  they  are  directly  correlated  with  one  another  [3].                       
All  observables  in  a  system  have  corresponding  wavefunctions  [1].  These  wavefunctions  are  mathematically               
represented  by  a  superposition  of  pure  time  harmonic,  or  sinusoidal,  vibrations.  Multiplying  the  wavefunction  by  its                  
complex  conjugate  and  integrating  gives  the  probability  of  finding  the  particle  between  two  points  for  a  given  time.                    
A  particle’s  probability  density  is  described  as  a  wave  group.  The  time-dependent  Schrödinger  equation  [1],  written                  
below,   can   be   solved   to   find   a   particle’s   wave   function   ,  (x, )ψ t  

ℏ ψ.i ∂t
∂ψ =− ˉh2

2m ∂x2
∂ ψ2

+ V (4)  
In  this  paper,  the  potential   V  has  no  explicit  time-dependence.  The  general  solution  to  the  time-dependent                  

Schrödinger  equation  is  a  linear  combination  of  separable  solutions,  a  continuous  sum  over  wavenumbers.  The                 
solution,  called  a  wave  packet,  carries  a  range  of  energies  and  speeds.  Wave  packets  are  localized  state  functions                    
consisting  of  a  packet  of  waves  with  wavenumbers  and  frequencies  centered  around  a  single  value   k   [1].  As  time                     
increases,  quantum  wave  packets  disperse,  meaning  that  the  width  of  the  wave  packet  increases  with  time.  This                   
happens  because  each  plane-wave  component  in  the  wave  packet  has  a  unique  wave  number  and  propagates  at  a                    
different  velocity  [5].  Wave  packets  for  bound  states  have  discrete  harmonic  components  [11]  and  wave  packets  of                   
free  electrons  with  initially  localized  position  disperse  over  time.  Wave  packets  of  classical  macroscopic  objects  also                  
have  dispersion  times,  albeit  on  a  much  longer  time  scale.  Dispersion  is  an  important  aspect  of  waves  and  wave                     
propagation.  The  dispersion  relation,  different  for  various  physical  systems,  is  the  relationship  between  a  wave’s                 
frequency  and  wavenumber.  In  quantum  mechanics,  the  smaller  the  value  of  the  spatial  uncertainty  ,  the  faster                σx    
electron   wave   packets   disperse   [5].     

According  to  Heisenberg’s  uncertainty  principle,  one  cannot  simultaneously  measure  momentum  and  position              
with  precise  and  accurate  measurements  for  both.  Instead,  the  more  precisely  one  measures  momentum,  the  less                  
precisely  one  can  measure  position,  and  vice  versa.  With  the  standard  deviation  denoted  by  ,  the  Heisenberg                σ    
uncertainty   principle   for   position   and   momentum   is,   

σ .σx p ≥ ˉh
2 (5)  

  
Energy   Conditions   in   Classical   General   Relativity   

  
We   treat   spacetime   as   a   classical   curved   Lorentzian   manifold.   This   manifold   is   subject   to   the   Einstein   equation,   

Rg g πG T .Rμν − 2
1

μν − Λ μν = 8 N μν (6)  
If   is  a  future-directed  timelike  vector  and   is  a  future-directed  null  vector,  then  the  stress-tensor  for  matter   uμ        kμ            
under   classical   physics   obeys   the   classical   energy   conditions   contained   in   Table   1.   
  

TABLE   1.    Energy   Conditions   in   Classical   General   Relativity.   

Energy   Condition   Inequality   
Weak   Energy   Condition   u u ≥0T μν

μ ν  

Null   Energy   Condition   

Strong   Energy   Condition   

Dominant   Energy   Condition   

 k k ≥0T μν
μ ν  

 u ≥0  T T g( μν − 2
1

μν) uμ ν  

 u ≥0T μ
ν

ν  
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In  classical  physics,  observer-measured  energy  density  is  non-negative.  Thus,  for  all  timelike  vectors  ,  the  matter               ua    
stress-energy  tensor   obeys  the  weak  energy  condition.  The  weak  energy  condition  constrains  the  behavior  of    T ab               
Einstein’s  field  equation  solutions.  At  a  critical  stage  during  gravitational  collapse,  the  weak  energy  condition  makes                  
singularity   formation   inevitable.   Thus,   gravitational   mass   must   be   positive   [9].     

  
Quantum   Inequalities     

  
A  general  feature  of  quantum  field  theory  is  the  proposition  every  classical  energy  condition  can  be  violated.                   

This  means  that  energy  density  under  quantum  field  theory  can  be  negative  without  bound.  Situations  yielding                  
observer-measured  negative  energy  density  include  the  Casimir  effect  (explanation  below,  see  Figure  1),  black  hole                 
evaporation,  and  squeezed  light  states.  Without  placing  restraints  on  negative  energy  density,  it  is  possible  to  violate                   
the  cosmic  censorship  conjecture  that  every  singularity  must  have  an  event  horizon  to  hide  the  singularity  from                   
direct  observation.  In  addition,  it  would  then  be  possible  to  experience  closed  time-like  curves  or  traversable                  
wormholes,  both  of  which  are  not  allowed  under  classical  physics  [9].  The  constraints  on  negative  energy  density                   
come  in  the  form  of  quantum  inequalities,  which  are  “natural”  mathematical  replacements  for  the  classical  energy                  
conditions.  Quantum  inequalities  constrain  the  duration  and  magnitude  of  negative  energy  fluxes.  Most  often,  a                 
quantum  energy  inequality  is  averaged  along  the  worldline,  or  geodesic,  of  an  inertial  observer.  This  paper  will                   
focus   on   the   worldline   quantum   inequality   with   mention   to   the   spatial   quantum   inequality.     

  
Cauchy   Surface   

  
A  Cauchy  surface  is  a  plane  in  spacetime  where  points  on  the  plane  are  spatially  related  but  have  no  time                      

difference.  A  spacetime  possessing  a  Cauchy  surface  is  inherently  causal.  Causality  implies  that  the  Cauchy  surface                  
can  be  thought  of  as  an  instant  in  time  where  the  initial  conditions  of  the  plane  uniquely  determine  future  events.  We                       
study  a  two-dimensional  spacetime  where  the  Cauchy  surface  refers  to  the  one-dimensional  plane  of  .  The  term                t = 0    
IN   region   refers   to   events   in   the   causal   past   where     and   the   OUT   region   refers   to   the   causal   future   where   .   t < 0 t > 0   

  
The   Casimir   Effect   

  
The  Casimir  effect  is  a  physical  force  due  to  the  presence  of  a  quantized  field.  Mechanically  speaking,  it  is  the                      

attractive  force  between  two  parallel  perfectly  conducting  plates  held  at  a  close  separation  distance.  The  force  arises                   
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The   expression   for   a   cylinder   spacetime   for   the   IN   region   ( )   is,  t < 0  
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∣ 0L Ren. = ( π−
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which   is   true   for   all   locations   except   that   of   the   delta-function   potential.     
A  motivating  problem  for  this  research  is  calculating  the  Casimir  effect  for  a  scalar  field  in  the  presence  of                     

delta-type  potentials.  The  “Casimir  problem”  refers  to  the  response  of  a  quantum  field’s  fluctuations  in  response  to                   
externally  imposed  boundary  conditions.  Physically,  there  are  no  interactions  strong  enough  to  enforce  a  boundary                 
condition   on   every   frequency   of   a   fluctuating   field.   Graham   et   al.   explore   a   physical   model   of   this   situation   [12].   

  
Wightman   Axioms   

  
Despite  the  long  history  of  quantum  field  theories,  there  are  no  rigorous  descriptions  of  the  structure  of  quantum                    

field  theories.  Quantum  field  theory  is  often  described  as  the  quantization  of  classical  field  theories.  Quantum  field                   
theories  that  use  axioms,  known  as  axiomatic  quantum  field  theories,  take  a  more  systematic  approach.  Axiomatic                  
quantum  field  theory  can  explain  the  transition  from  Minkowski  spacetime  to  Euclidean  spacetime,  therefore                
explaining   the   transition   from   relativistic   quantum   field   theory   to   Euclidean.     

Wightman  fields  are  operator  valued  distributions  satisfying  the  Wightman  Axioms.  The  Wightman  functions,               
which  are  used  in  this  paper,  are  the  functions  that  correlate  to  Wightman  fields.  Wightman  quantum  field  theory                    
consists  of  the  space  of  states  (the  projective  space  of  a  complex  Hilbert  space),  the  vacuum  vector,  a  unitary                     
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Green’s   Functions   

  
Green’s  theorem  is  often  used  in  electrostatics  problems  involving  finite  regions  of  space  with  bounding  surfaces                  

and  prescribed  boundary  conditions.  This  is  because  it  provides  mathematical  tools  to  handle  boundary  conditions                 
[6].  In  previous  papers,  Green’s  functions  are  used  to  derive  the  energy  conditions  with  a  closed  boundary  and                    
Cauchy   boundary   conditions   [7].   One   begins   with   the   wave   equation,   which   typically   has   the   basic   structure,   

Ψ πf∇2 − 1
c2 ∂t2

∂ Ψ2
=− 4 (x, )t , (9)  

where   is  a  known  source  distribution  and   c   is  the  velocity  of  wave  propagation  in  the  medium.  The  solution   f (x, )t                    
to  the  wave  equation  can  be  represented  as  a  sum  of  mode  functions.  The  Euclidean  two-point  function  is  equal  to                      
the  sum  of  the  mode  functions  and  is  the  analogue  of  a  Feynman  Green’s  function,  G( x ,  x’ ),  for  the  Lorentzian                      
metric.   Thus,   to   solve   the   wave   equation,   it   is   helpful   to   first   find   a   Green’s   function.   

The  general  solution  for  a  Green’s  function  is  comprised  of  the  advanced  and  retarded  Green’s  functions,                  
,   ,   respectively.   The   general   solution   for   the   Green’s   function   is,  (x; )  G( )− x′ (x; )  G(+) x′  

G GG (R) = A (+) (R) + B ( )− (R) , (10)  
where  ,  where  given  the  vectors  of  points   and  .  Coefficients   A  and   B  depend  on  the    R = R∣ ∣  R   = x − x′       x    x′         
boundary  conditions  of  the  given  problems.  ,  the  in-traveling  wave,  exhibits  the  causal  behavior  associated  with        G(+)           
a  wave  disturbance.  The  term   represents  a  diverging  spherical  wave  that  propagates  from  the  origin.       GA (+) (R)            
Likewise,   is  the  advanced  Green’s  function  where  the  term   represents  a  converging  spherical  wave   G( )−          GB ( )− (R)       
traveling   toward   the   origin   [6].     

The   time-dependent   Green’s   functions   for   a   nondispersive   medium   are,   
δ  G(±) (R, )τ = 1

R τ∓( c
R) , (11)  

where  the  Green’s  functions  are  dependent  on  the  relative  distance,   ,  and  the  relative  time,  ,             R = x − x′        τ = t − t′  
between  source  and  observation  point.  The  delta  function’s  argument  shows  that  an  effect,  observed  at  point   x  at                    
time  t,  is  caused  by  the  action  of  a  source  located  a  distance   R  away  occurring  at  an  earlier  (retarded)  time.  The  time                         
difference,  represented  as  ,  is  the  time  of  propagation  of  the  disturbance  between  the  two  points.  To  solve  the     c

R                 

wave   function,   one   can   integrate   the   Green’s   function     and   source   distribution ,    G(±) x, ; ,( t x′ t′) f (x , ) ′ t′   

G (x , )d x dt .  Ψ(±) (x, )t = ∬ 
 

(±) x, ; ,( t x′ t′) f ′ t′ 3 ′ ′ (12)  
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This  equation  applies  to  a  source  distribution  localized  in  time  and  space.  To  apply  the  above  equation  to  a  definite                      
physical   problem,   one   may   add   solutions   to   the   homogeneous   equation   [6].     

By  calculating  the  solutions  to  the  wave  equation,  one  can  construct  the  quantum  inequalities  by  summing  the                   
solution  mode  functions.  Thus,  by  knowing  the  two-point  function  for  the  given  spacetime,  one  can  calculate  the                   
quantum   inequalities   by   Euclideanizing   and   taking   the   necessary   derivatives   of   the   two-point   function   [7].     

  
PROJECT   INTRODUCTION   

  
 In  classical  physics,  there  exist  classical  energy  conditions  that  mathematically  constrain  energy  density  in  space                  

and  time  to  be  nonnegative  (Table  1).  These  come  from  the  observation  that  mass  is  only  positive  in  value.                     
However,  in  quantum  physics,  energy  density  can  be  negative.  Quantum  inequalities  are  natural  replacements  for                 
classical  energy  conditions  and  are  local  constraints  on  the  extent  and  magnitude  of  negative  energy  density  in                   
spacetime.   In   quantum   field   theory,   the   energy   density   can   be   calculated   from   the   Wightman   two-point   function,     

.  ρ (x, , , )t x′ t′ = 2
1 ∂ ∂ ∂( t

′
t + ∂x

′
x)G x, , ,( t x′ t′)  (13)  

Mamaev  and  Trunov  proposed  a  novel  method  to  calculate  the  Casimir  effect,  explained  below.  They  calculated                  
the  vacuum  expectation  value  of  the  stress-energy  tensor  for  a  relativistic  quantum  field  theory,  where  the  quantum                   
field  interacts  with  an  externally  applied  potential  featuring  two  Dirac  delta  functions.  A  paper  by  Solomon  asserts                   
that  this  violates  the  spatial  energy  condition.  However,  Solomon  did  not  include  the  energy  contribution  of  particle                   
creation   to   the   stress-energy   tensor.   In   contrast,   in   this   paper   we   include   the   effects   of   particle   creation.     

We  propose  calculating  the  energy  contribution  to  the  stress-energy  tensor  caused  by  particle  creation  at  the                  
Cauchy  surface,  where  .  To  mathematically  prove  the  correctness  of  this  approach,  we  examine     t = 0            
two-dimensional  Minkowski  spacetime  in  the  presence  of  an  external,  time-dependent  Mamaev-Trunov  potential.              
For   simplicity,   we   are   using   the   relativistic   Klein-Gordon-Fock   wave   equation   for   massless,   spinless   particles,   

.∂ ϕ2

c ∂t2 2 − ∂x2
∂ ϕ2

+ V (x, )t ϕ = 0 (14)  
The  Klein-Gordon-Fock  relativistic  wave  equation  originates  from  the  Schrödinger  equation  and  describes  energy               
and  momentum.  The  equation  is   second  order  in  space  and  time  and  describes  the  dynamics  of  a  boson  particle.  We                      
use  this  equation  because  it  is  mathematically  simpler  to  use  than  the  Dirac  equation  for  relativistic  particles  with                    
half   integer   spin.   

The   scalar   quantum   field   with   the   time-dependent   potential   is,     
λV ( )ϕ ,∂ ϕ2

c ∂t2 2 − ∂x2
∂ ϕ2

+ 2 (x) θ − t = 0 (15)  
with   the   Mamaev-Trunov-type   potential   given   by,   

 V (x) = δ[ x( − 2
a) + x( − 2

a)] . (16)  
The  potential  is  two  delta-functions  barriers  separated  by  a  distance   and  centered  at  the  origin.  The  presence  of            a          
the  delta-functions  causes  a  constant,  negative-energy  Casimir  effect  in  the  empty  region  between  them  and  zero                  
energy  density  outside  of  the  delta-functions  [3].  When  the  potential  is  shut  off,  the  negative-energy  Casimir  effect                   
becomes   dynamical,   and   begins   to   move   left-   and   right-ward   in   the   spacetime.   

Substituting   (10)   into   (9)   yields,   
,∂ ϕ2

c ∂t2 2 − ∂x2
∂ ϕ2

+ λ δ[ x( + 2
a) + δ x( − 2

a)]Θ ( )− t ϕ = 0 (17)  
where   λ   is   the   coupling   constant,    𝛿𝛿    is   the   Dirac   Delta   function,   and    𝛩𝛩    is   the   unit   step   function.     
  

Results   of   Mamaev   And   Trunov   
  

Mamaev  and  Trunov,  in  their  1981  paper  [11],  proposed  a  novel  method  to  calculate  the  Casimir  effect  by                   
calculating  the  vacuum  expectation  value  of  the  stress-energy  tensor  for  a  relativistic  quantum  field  theory.  Mamaev                  
and  Trunov  calculate  the  vacuum  energy-momentum  tensor  for  bounded  manifolds  without  necessitating  a  cut-off                
value.  They  replace  impenetrable  boundaries  with  localized  potentials  dependent  on  .  This  method  uses  a  quantum            λ       
field  that  interacts  with  an  externally  applied  potential-  the  “Mamaev-Trunov  potential”  used  in  this  paper.  Mamaev                  
and  Trunov  calculate  the  well-behaved  difference  between  the  expectation  value  of  the  stress-energy  tensor  with  and                  
without  a  potential.  By  taking  the  limit  of  the  coupling  strength  as  the  potential  approaches  infinity,  they  calculate                    
the   traditional   Casimir   effect.     

The  quantum  field,  ,  in  this  model  utilizes  the  Klein-Gordon-Fock  equation  with  a  time-independent     (x, )Φ t            
potential,  

.  ∂ V (x)[ t
2 − ∂x

2 + λ ]Φ (x, )t = 0 (18)  
Mamaev  and  Trunov  determine  the  kinetic  energy  density,  the  part  of  the  energy  density  that  does  not  explicitly                    

dependent  on  the  scalar  potential,  of  a  massless  scalar  field  in  one-dimensional  spacetime.  They  use  a  simple                   
potential  comprised  of  two  Dirac  delta  functions  that  have  a  separation  distance  of  a  and  are  centered  around  the                     
origin.   The   potential   is   given   by,     

 V (x) = δ x( + 2
a) + δ x( − 2

a) . (19)  
Teis  yields  a  negative  result  for  kinetic  energy  density  in  the  region  between  ,  shown  in  grey  in  Figure  2.  Next,               ,2

a−
2
a         

they   calculate   the   renormalized   vacuum   expectation   value   of   the   energy-density   operator.   This   is   expressed     
  

  
FIGURE   2.    Mamaev   and   Trunov’s   solution   for   the   Casimir   effect   (red).   

  
mathematically   as,   

 〈Ω 〉T ∣ ∣ 00
 ∣ 
∣ Ω ren

(x) = ε Θ[ x( + 2
a) − Θ x( − 2

a)] , (20)  
where  ,  and   is  the  contribution  to  the  vacuum  expectation  value  due  to  the  “odd”  mode  solutions  and   ε = ε1 + ε2   ε1                 

  is   the   contribution   to   the   vacuum   expectation   value   due   to   the   “even”   mode   solutions.   ε2   
An   approximation   of   the   value   of   the   Casimir   energy   density   is   given   by,   

≃ .ε (λ, )a =− λ
2πa ∫

∞

0

dy yey

ye +sinh sinh y y
2
λa + λ

2πa ∫
∞

0

dy yey

ye +cosh cosh y y
2
λa − 3πλ

4a(18λa+7π )2 (21)  

  

  
FIGURE   3.    Our   competing   model.   The   difference   between   Mr.   Solomon's   model   and   ours   is   that   our   model   includes   boundary   

conditions   for   the   energy   fluxes.   
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This  equation  applies  to  a  source  distribution  localized  in  time  and  space.  To  apply  the  above  equation  to  a  definite                      
physical   problem,   one   may   add   solutions   to   the   homogeneous   equation   [6].     

By  calculating  the  solutions  to  the  wave  equation,  one  can  construct  the  quantum  inequalities  by  summing  the                   
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and  time  to  be  nonnegative  (Table  1).  These  come  from  the  observation  that  mass  is  only  positive  in  value.                     
However,  in  quantum  physics,  energy  density  can  be  negative.  Quantum  inequalities  are  natural  replacements  for                 
classical  energy  conditions  and  are  local  constraints  on  the  extent  and  magnitude  of  negative  energy  density  in                   
spacetime.   In   quantum   field   theory,   the   energy   density   can   be   calculated   from   the   Wightman   two-point   function,     
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Mamaev  and  Trunov  proposed  a  novel  method  to  calculate  the  Casimir  effect,  explained  below.  They  calculated                  
the  vacuum  expectation  value  of  the  stress-energy  tensor  for  a  relativistic  quantum  field  theory,  where  the  quantum                   
field  interacts  with  an  externally  applied  potential  featuring  two  Dirac  delta  functions.  A  paper  by  Solomon  asserts                   
that  this  violates  the  spatial  energy  condition.  However,  Solomon  did  not  include  the  energy  contribution  of  particle                   
creation   to   the   stress-energy   tensor.   In   contrast,   in   this   paper   we   include   the   effects   of   particle   creation.     

We  propose  calculating  the  energy  contribution  to  the  stress-energy  tensor  caused  by  particle  creation  at  the                  
Cauchy  surface,  where  .  To  mathematically  prove  the  correctness  of  this  approach,  we  examine     t = 0            
two-dimensional  Minkowski  spacetime  in  the  presence  of  an  external,  time-dependent  Mamaev-Trunov  potential.              
For   simplicity,   we   are   using   the   relativistic   Klein-Gordon-Fock   wave   equation   for   massless,   spinless   particles,   
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The  Klein-Gordon-Fock  relativistic  wave  equation  originates  from  the  Schrödinger  equation  and  describes  energy               
and  momentum.  The  equation  is   second  order  in  space  and  time  and  describes  the  dynamics  of  a  boson  particle.  We                      
use  this  equation  because  it  is  mathematically  simpler  to  use  than  the  Dirac  equation  for  relativistic  particles  with                    
half   integer   spin.   

The   scalar   quantum   field   with   the   time-dependent   potential   is,     
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+ 2 (x) θ − t = 0 (15)  
with   the   Mamaev-Trunov-type   potential   given   by,   
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The  potential  is  two  delta-functions  barriers  separated  by  a  distance   and  centered  at  the  origin.  The  presence  of            a          
the  delta-functions  causes  a  constant,  negative-energy  Casimir  effect  in  the  empty  region  between  them  and  zero                  
energy  density  outside  of  the  delta-functions  [3].  When  the  potential  is  shut  off,  the  negative-energy  Casimir  effect                   
becomes   dynamical,   and   begins   to   move   left-   and   right-ward   in   the   spacetime.   

Substituting   (10)   into   (9)   yields,   
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where   λ   is   the   coupling   constant,    𝛿𝛿    is   the   Dirac   Delta   function,   and    𝛩𝛩    is   the   unit   step   function.     
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field  that  interacts  with  an  externally  applied  potential-  the  “Mamaev-Trunov  potential”  used  in  this  paper.  Mamaev                  
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without  a  potential.  By  taking  the  limit  of  the  coupling  strength  as  the  potential  approaches  infinity,  they  calculate                    
the   traditional   Casimir   effect.     
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potential,  
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FIGURE   2.    Mamaev   and   Trunov’s   solution   for   the   Casimir   effect   (red).   

  
mathematically   as,   

 〈Ω 〉T ∣ ∣ 00
 ∣ 
∣ Ω ren

(x) = ε Θ[ x( + 2
a) − Θ x( − 2

a)] , (20)  
where  ,  and   is  the  contribution  to  the  vacuum  expectation  value  due  to  the  “odd”  mode  solutions  and   ε = ε1 + ε2   ε1                 

  is   the   contribution   to   the   vacuum   expectation   value   due   to   the   “even”   mode   solutions.   ε2   
An   approximation   of   the   value   of   the   Casimir   energy   density   is   given   by,   

≃ .ε (λ, )a =− λ
2πa ∫

∞

0

dy yey

ye +sinh sinh y y
2
λa + λ

2πa ∫
∞

0

dy yey

ye +cosh cosh y y
2
λa − 3πλ

4a(18λa+7π )2 (21)  

  

  
FIGURE   3.    Our   competing   model.   The   difference   between   Mr.   Solomon's   model   and   ours   is   that   our   model   includes   boundary   

conditions   for   the   energy   fluxes.   
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Results   of   Graham   et   al.   
  

Graham  et  al.  [12]  explore  a  physical  model  of  the  Casimir  effect  by  coupling  a  fluctuating  field  to  a  smooth                      
background  potential  where  the  boundary  condition  is  implemented  in  a  certain  limit.  Graham  et  al.  develop  new                   
methods  to  compute  renormalized  energy  densities  and  single  loop  quantum  energies.  The  former  process  is  the                  
method  we  use  in  this  paper  to  compute  the  renormalized  energy  density.  The  approach  of  Graham  et  al.  uses                     
scattering  data  to  compute  Green’s  functions  for  time-independent  background  fields.  Their  calculation  is  useful  for                 
the  numerical  study  of  single  limits  since  it  both  avoids  oscillating  terms  as  well  as  exponentially  growing  and                    
decaying   terms.     

We  examined  the  results  of  Graham  et  al.  [12]  to  learn  from  their  general  approach  to  calculating  a  complete                     
renormalization  of  the  expectation  value  of  energy  density  for  a  scalar  field  in  the  presence  of  a  potential.  Graham  et                      
al.   calculate   a   massive   scalar   field   in   Minkowski   spacetime   that   obeys   the   wave   equation,   

  
.  ∂[ t

2 − ∂x
2 + m2 + λ δ( x( − 2

a) + δ x( + 2
a))]Φ (x, )t = 0 (22)   

  
Graham  et  al.  renormalize  by  identifying  divergent  contributions  to  the  Casimir  energy.  They  separate  the                 
expectation   value   of   the   energy   density   operator   into   three   parts,   

〈Ω 〉T ∣ ∣ 00
 ∣ 
∣ Ω Ren.

= 2
1 (ε )+ εF D + εCT , (23)  

where,   

,ε (x, , )a λ = ∫
∞

m
π
dt η(it,x)
√t m2− 2

(24)  

and,   

δ  εF D (x, , )a λ + εCT (x, , )a λ = λ
2π x(∣ ∣ − 2

a) − 2π
m λ2

∫
∞

m

dt
t√t m2− 2

e( 2 x t− ∣ − 2
a∣ + e 2 x+ t− ∣ 2

a∣ ) . (25)  

The   vacuum   expectation   value   of   the   energy   density   is   then   calculated   as,   
  

0 for 2, ε or 0≤ 2.  〈Ω 〉T ∣ ∣ 00
 ∣ 
∣ Ω Ren. = (− ∞ + λ

4π) + δ[ x( − 2
a) + δ x( + 2

a)] + { x∣ ∣ > a/  (λ, )a f x∣ ∣ < a/ (26)   
  

Results   of   Flanagan   
  

We  examine  the  results  of  Flanagan  [9]  to  calculate  energy  density  of  the  stress-energy  tensor  by  using  bounds.                    
Flanagan  analyses  the  behavior  of  the  renormalized  expected  stress-energy  tensor  in  two-dimensional  Minkowski               
spacetime  for  a  free  massless  scalar  field.  Flanagan  calculates  the  optimal  lower  bound  and  characterizes  its                  
respective  state.  Next,  Flanagan  calculates  the  lower  bound  for  an  arbitrary  smooth  positive  weighting  function.                 
Flanagan’s   definition   for   the   temporally   sampled   energy   density   for   fixed   spatial   position     is,  x0  

ω 〉 t,εT f[ ] = ∫
∞

∞−
〈 : ∣ ∣ T 00 : ∣ ∣ ω (x , )0 t f (t) d (27)  

where   is  the  stress-energy  operator  and   is  a  non-negative  normalized  sampling  function.  Flanagan  then   T μν       f (v)          
defines   the   spatially   sampled   energy   density   as,   

τ≥ dv.∫
∞

∞−
〈ρ〉Ren. (τ ) f (τ ) d − 1

24π ∫
∞

∞−
f (v)
f (v)2

(28)  

  
Results   of   Solomon   

  
In  2011,  Dan  Solomon  published  a  paper  [10]  claiming  that  his  model  would  violate  Flanagan’s  two-dimensional                  

worldline   quantum   inequality   [9],   

τ≥ dv,∫
∞

∞−
ρ (τ ) f (τ ) d − 1

24π ∫
∞

0
f (v)

f (v)∣ ′ ∣2 (29)  

where     is   the   energy   density,     is   a   sampling   function,   and     is   a   non-negative   normalized   sampling  ρ (τ ) f (τ ) f (v)  
function.     

Solomon  derived  that  the  negative  energy  between  the  two  delta-functions  splits  into  two  fluxes  of  negative                  
energy,  one  moving  left  and  one  moving  right  as  shown  in  Fig.  2.  For  an  observer  sitting  to  the  right  of  the  region  of                          
the   potential,   the   negative   energy-density   integrated   against   Solomon’s   test   function   results   in   the   inequality,   

,  2
η− ( 8t50

3a5
+ 2t30

5a3 ) ≥ − 5
3πt20

(30)  
which  indeed  violates  the  worldline  quantum  inequality  in  two  dimensions.  Solomon  uses  a  similar  technique  to                  
violate  the  spatial  quantum  inequality.  If  the  fluxes  shown  in  Figure  2  are  correct,  then  the  quantum  inequalities                    
would   fail,   demonstrating   a   mathematical   flaw   in   a   fundamental   property   of   quantum   physics.     

However,  turning  off  the  Mamaev-Trunov  potential  at  the  Cauchy  surface,  where  ,  causes  a  change  in  the             t = 0       
background  spacetime.  This  leads  to  particle  creation  that  causes  excitations  of  the  “standard”  modes  in  the  “OUT”                   
region  of  spacetime,  where .  Solomon  neglects  the  fact  that  shutting  off  the  potential  at  time   results  in     t > 0             t = 0    
particle  creation.  Not  incorporating  particle  creation  results  in  an  incorrect  value  for  the  energy  contribution  to  the                   
stress-energy   tensor,   eventually   leading   to   a   different   result.     

  

  
FIGURE   4.    A   two-dimensional   universe   with   a   timelike   geodesic   (red   line)   passing   through   a   region   of   space   encompassing   

negative   energy   density   (grey   region).     

  
FIGURE   5 .   Solomon's   Model.   

Previous   Work   on   Topic   
  

A  previous  paper  published  by  Pfenning  [13]  studies  a  massless,  quantized  scalar  field  in  the  presence  of  an                    
external,  time-dependent  Mamaev-Trunov  potential  for  a  single  delta-function  in  two-dimensional  cylinder             
spacetime,  illustrated  in  Figure  6.  As  in  this  project,  the  quantum  field  is  governed  by  the  Klein-Gordon-Fock  wave                    
equation.     

The   renormalized   expectation   value   of   the   stress-energy   tensor   for   the   IN   region   is,   
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,  〈0 〉L T ∣ ∣ μν
IN  ∣ 
∣ 0L Ren = (− π

6L2 + L2
Β ∁− ) δμν (31)  

and   for   the   OUT   region   is,   
 〈0 〉L T ∣ ∣ μν

OUT  ∣ 
∣ 0L Ren

= λ
4π δ (t )[ (t )+ x + δ − x ] δμν + λ

4π δ (t )[ (t )+ x − δ − x ] 0 1 1 0 [ ] .  (32)  
Shutting   the   potential   off   at   time    t   =   0    creates   two   positive   energy   pulses,   shown   in   Figure   7.   The   pulses     
have   magnitude   ;   one   pulse   moves   in   the    -x    direction   and   the   other   in   the    +x    direction.  λ

4π  

  
FIGURE   6.    Pfenning's   model   of   cylinder   spacetime   in   the   presence   of   a   potential.   

  
  

  
FIGURE   7.    Findings   from   Dr.   Pfenning's   model   of   cylindrical   spacetime.   

CALCULATIONS   
  

This  paper  mathematically  demonstrates  that  there  exist  excitations  of  the  “standard”  modes  of  the  OUT  region                  
of  spacetime  when  the  potential  is  turned  off.  The  first  task  is  to  solve  two  initial  value  problems  for  Cauchy  data                       
(initial  data)  at  time   t  =  0.  Doing  so  involves  calculating  the  Fourier  decomposition  of  plane  waves  from  the  causal                      
past  (time   t  <  0 )  to  the  Cauchy  data  surface.  This  step  was  calculated  by  Mamaev  and  Trunov  in  their  1982  paper                        
[14].   The   antisymmetric   mode   solution   to   the   Klein-Gordon   equation   is,   

e in ,Φ−
k1 (x, )t = 1

√2πw
iwt− sin s (kx)  (33)  

and   the   symmetric   mode   solution   is,     
e cosΦ−

k2 (x, )t = 1
√2πw

iwt− (k )x∣ ∣ + δ . (34)  
We   calculate   the   Cauchy   data     as,     

in Φ−
k1 (x, )0 = 1

√2πw
sin s (kx)  (35)   

in ,∂ Φt
−
k1 (x, )0 = iw−

√2πw
sin s (kx)  (36)  
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for   the   antisymmetric   modes   and,   
e cosΦ−

k2 (x, )t = 1
√2πw

iwt− (k )x∣ ∣ + δ (37)  

cos∂ Φt
−
k1 (x, )0 = iw−

√2πw
(k )x∣ ∣ + δ , (38)  

for   the   symmetric   modes.     
The  next  task  is  to  determine  the  Fourier  coefficients,   and  .  We  begin  by  taking  the  Fourier  transform           α (κ)   β (κ)         

of   the   functions   at   the   Cauchy   surface.   Our   calculated   value   for   the   Fourier   coefficients   is,     
( )(δ )  α (κ) = 1

i2√2 √w
ω +√ω

w (κ )− k − δ (κ )+ k (39)  

 β (κ) = 1
i2√2 (√w

ω −√ω
w) (δ )(κ )− k − δ (κ )+ k , (40)  

for   the   antisymmetric   modes   and,     
πcosδ[δ )] }  α(κ) = 1

2 π√2 (√ω
w +√w

ω) { (κ )− k + δ (κ )+ k − k κ2− 2
2ksinδ (41)  

πcosδ[δ )] },  β (κ) = 1
2 π√2 (√ω

w −√w
ω) { (κ )− k + δ (κ )+ k − k κ2− 2

2ksinδ (42)  

for  the  symmetric  modes.  Notice  that  the  Fourier  coefficients  for  the  symmetric  mode  are  more  complicated  than  the                    
Fourier   coefficients   for   the   antisymmetric   mode.     

We   next   calculate   the   continued   evolution   of   each   mode   for   t   >   0,   using   the   plain   wave   mode,   
e ,Ψ 

κ (x, )t = 1
√4πω

i(κx ωt)− (43)  
and   the   generic   solution,   

[α(κ)Ψ (κ)Ψ ]dκΨ 
 (x, )t = ∫

+∞

∞−

 
κ (x, )t − β  

κ (x, )t (44)  

where     and     are   the   Fourier   coefficients.   The   continued   evolution   of   each   mode   is,   α (κ) (κ)β   
 {cosδ os eΨ(x,t)

even = 1
√2πw

cos c (kx)  iwt− (45)  

sinδ [cos os in ]}− k
π ∫

∞

∞−

dκ
k κ2− 2 c (κx t)− ω  + iω

w sin s (κx t)− ω  (46)  

 in e .Ψodd
(x,t) = 1

√2πw
sin s (kx)  iwt− (47)  

Next,  we  combine  the  Fourier  evolution  of  the  modes  and  renormalize  by  subtracting  the  same  expression  for   𝜆𝜆  =  0.                      
We   then   take   the   derivative   of   the   Wightman   function   to   find   the   unrenormalized   density,   

 ρ (x, , , )t x′ t = 2
1 ∂ ∂ ∂( t

′
t + ∂x

′
x)G x, , ,( t x′ t′) , (48)  

where     is   the   Wightman   function,   explained   in   the   ‘Wightman   Axioms’   section.    G x, , ,( t x′ t′)   
We  then  calculate  the  Fourier  transform  for  IN  region  plane  waves  at  the  Cauchy  surface  to  find  the  Fourier                     

coefficients   of   plane   waves   to   the   causal   future.   The   result   is,     

k[a ],ϕOUT (x, )t = ∫
∞

∞−
d (k)ψ (k, , )x t + b (k)ψ (k, , )x t (49)  

where   a(k)  and   b(k)  are  the  Fourier  coefficients  for  the  IN  region.  We  find  that  the  number  of  created  particles  is                       
proportional   to    .b(k)∣ ∣2  

We  next  calculate  the  mode  contributions  for  the  entirety  of  our  two-dimensional  spacetime,  and  find  that  the                   
antisymmetric   mode   contribution   is,     

k si e si e ,  G+ 
Anti x;( x′) = 1

2π ∫
∞

0
d 1

√w (kx)  iwt− 1
√w (kx )′  +iwt′ (50)  

and   the   symmetric   mode   contribution   is,   

(x, ) [cos os os os(κ ]e .  GSym
+ REN x′ = 1

2π ∫
∞

0
w
∂k (κ )x∣ ∣ + δ c κ( x ∣ ∣ 

′ ∣ 
∣ + δ) − c (κ )x∣ ∣ c x ∣ ∣ 

′ ∣ 
∣ 

iw t t− ( − ′) (51)  

Note  that  these  results  display  the  renormalized  positive  frequency  Wightman  function.  The  next  step  is  to  calculate                   
the  expectation  value  of  energy  density  in  the  OUT  region.  We  calculate  the  vacuum  expectation  value  of  the                    
stress-energy   tensor   to   be,   
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We   calculate   the   Cauchy   data     as,     

in Φ−
k1 (x, )0 = 1

√2πw
sin s (kx)  (35)   

in ,∂ Φt
−
k1 (x, )0 = iw−

√2πw
sin s (kx)  (36)  
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for   the   antisymmetric   modes   and,   
e cosΦ−

k2 (x, )t = 1
√2πw

iwt− (k )x∣ ∣ + δ (37)  

cos∂ Φt
−
k1 (x, )0 = iw−

√2πw
(k )x∣ ∣ + δ , (38)  

for   the   symmetric   modes.     
The  next  task  is  to  determine  the  Fourier  coefficients,   and  .  We  begin  by  taking  the  Fourier  transform           α (κ)   β (κ)         

of   the   functions   at   the   Cauchy   surface.   Our   calculated   value   for   the   Fourier   coefficients   is,     
( )(δ )  α (κ) = 1

i2√2 √w
ω +√ω

w (κ )− k − δ (κ )+ k (39)  
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i2√2 (√w

ω −√ω
w) (δ )(κ )− k − δ (κ )+ k , (40)  

for   the   antisymmetric   modes   and,     
πcosδ[δ )] }  α(κ) = 1

2 π√2 (√ω
w +√w

ω) { (κ )− k + δ (κ )+ k − k κ2− 2
2ksinδ (41)  

πcosδ[δ )] },  β (κ) = 1
2 π√2 (√ω

w −√w
ω) { (κ )− k + δ (κ )+ k − k κ2− 2

2ksinδ (42)  

for  the  symmetric  modes.  Notice  that  the  Fourier  coefficients  for  the  symmetric  mode  are  more  complicated  than  the                    
Fourier   coefficients   for   the   antisymmetric   mode.     

We   next   calculate   the   continued   evolution   of   each   mode   for   t   >   0,   using   the   plain   wave   mode,   
e ,Ψ 

κ (x, )t = 1
√4πω

i(κx ωt)− (43)  
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[α(κ)Ψ (κ)Ψ ]dκΨ 
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+∞
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κ (x, )t − β  

κ (x, )t (44)  

where     and     are   the   Fourier   coefficients.   The   continued   evolution   of   each   mode   is,   α (κ) (κ)β   
 {cosδ os eΨ(x,t)

even = 1
√2πw

cos c (kx)  iwt− (45)  

sinδ [cos os in ]}− k
π ∫

∞

∞−
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k κ2− 2 c (κx t)− ω  + iω

w sin s (κx t)− ω  (46)  

 in e .Ψodd
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√2πw
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Next,  we  combine  the  Fourier  evolution  of  the  modes  and  renormalize  by  subtracting  the  same  expression  for   𝜆𝜆  =  0.                      
We   then   take   the   derivative   of   the   Wightman   function   to   find   the   unrenormalized   density,   

 ρ (x, , , )t x′ t = 2
1 ∂ ∂ ∂( t

′
t + ∂x

′
x)G x, , ,( t x′ t′) , (48)  

where     is   the   Wightman   function,   explained   in   the   ‘Wightman   Axioms’   section.    G x, , ,( t x′ t′)   
We  then  calculate  the  Fourier  transform  for  IN  region  plane  waves  at  the  Cauchy  surface  to  find  the  Fourier                     

coefficients   of   plane   waves   to   the   causal   future.   The   result   is,     

k[a ],ϕOUT (x, )t = ∫
∞

∞−
d (k)ψ (k, , )x t + b (k)ψ (k, , )x t (49)  

where   a(k)  and   b(k)  are  the  Fourier  coefficients  for  the  IN  region.  We  find  that  the  number  of  created  particles  is                       
proportional   to    .b(k)∣ ∣2  

We  next  calculate  the  mode  contributions  for  the  entirety  of  our  two-dimensional  spacetime,  and  find  that  the                   
antisymmetric   mode   contribution   is,     

k si e si e ,  G+ 
Anti x;( x′) = 1

2π ∫
∞

0
d 1

√w (kx)  iwt− 1
√w (kx )′  +iwt′ (50)  

and   the   symmetric   mode   contribution   is,   

(x, ) [cos os os os(κ ]e .  GSym
+ REN x′ = 1

2π ∫
∞

0
w
∂k (κ )x∣ ∣ + δ c κ( x ∣ ∣ 

′ ∣ 
∣ + δ) − c (κ )x∣ ∣ c x ∣ ∣ 

′ ∣ 
∣ 

iw t t− ( − ′) (51)  

Note  that  these  results  display  the  renormalized  positive  frequency  Wightman  function.  The  next  step  is  to  calculate                   
the  expectation  value  of  energy  density  in  the  OUT  region.  We  calculate  the  vacuum  expectation  value  of  the                    
stress-energy   tensor   to   be,   
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[δ  < T ∣ ∣ tt
 ∣ 
∣ 0 >

ren
(x, )t = λ

8π x( + t − 2
a) + δ x( + t + 2

a) − 2
η Θ[ x( + t + 2

a) − Θ x( + t − 2
a)] + (52)  

 .  δ  [ λ
8π x( − t − 2

a) + δ x( − t + 2
a) − 2

η Θ[ x( − t + 2
a) − Θ x( − t − 2

a)]  
Choosing  a  stationary  geodesic  at   which  is  either  to  the  right  or  the  left  of  the  potential,  we  determine  that  the       x0                  
energy   density   is,     

ρren (t) = ⟨0 ⟩T ∣ ∣ tt
 ∣ 
∣ 0 ren

(x , )0 t . (53)  
The  left-hand  side  of  the  quantum  inequality  comes  from  the  integration  of  this  expression  against  Solomon’s  test                   
function,   i.e.   

HS t,L = ∫
∞

0
ρren (t) f (t) d (54)  

where,     
t (t ) .f (t) = t50

30 2 − t0
2 (55)  

  
Our   resulting   inequality   is,     

.  − 5
3πt20

λ
4πa ( 10t50

27a5
+ 4t30

25a3 ) ≥ − 5
3πt20

(56)  
This  result,  unlike  Solomon’s,  is  always  true,  as  the  left-hand  side  is  positive  for  all  values  of   and  .  The  positive                   a   t0    
energy  pulse  on  the  leading  and  trailing  edges  of  the  traveling  negative-energy  regions  overwhelms  the  negative                  
energy  contributions  in  the  quantum  inequality.  Therefore,  particle  creation  and  the  positive  energy  associated  with                 
it   play   a   dominant   role   in   the   dynamical   model   and   the   spatial   quantum   inequality   is   not   violated.   
  

CONCLUSION   
  

Classical  energy  conditions  are  mathematical  constraints  on  energy  conditions  in  space  and  time.  In  classical                 
physics,  the  energy  conditions  constrain  energy  density  to  be  nonnegative  because  mass  is  positive  in  value.  In                   
quantum  physics,  however,  energy  density  can  be  negative.  The  replacements  for  classical  energy  conditions,                
quantum  inequalities  locally  constrain  the  magnitude  and  extent  of  negative  energy  density  in  spacetime.  Mamaev                 
and  Trunov  generated  a  method  to  calculate  the  Casimir  effect,  a  physical  force  arising  due  to  the  presence  of  a                      
quantized  field,  by  calculating  the  vacuum  expectation  value  of  the  stress-energy  tensor  for  a  relativistic  quantum                  
field  theory  and  using  a  double  delta  function  potential.  A  paper  by  Dan  Solomon  claims  that  this  violates  the  spatial                      
energy  condition;  however,  Solomon  neglected  the  energy  contribution  of  particle  creation  to  the  stress-energy                
tensor.  In  this  paper,  we  include  the  effects  of  particles  created  after  shutting  off  the  potential  at  the  Cauchy  surface                      
and  re-calculate  the  energy  contributions  to  the  stress-energy  tensor.  We  do  so  in  a  two-dimensional  Minkowski                  
spacetime  with  an  external,  time-dependent  Mamaev-Trunov  potential.  We  find  that  the  spatial  quantum  inequality                
is   not   violated.     
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Abstract.  In  order  to  spectroscopically  probe  the  superconducting  energy  gap  of  potassium-doped  Ba122  iron  pnictides,                 
in  particular  Ba (1-x) K x Fe 2 As 2  where  x  =  0.33  (under-doped  regime),  we  have  performed  four-wire  conductance                
measurements    from  T  =  2K  to  52K .  We  report  evidence  for  multi-gap  features  with  gaps  corresponding  to  directional                    
tunneling  through  the   ab -  axes  of  this  iron  pnictide.  The  multi-gap  features  a  predominant  result  of  tunneling  across  the                     
ab -   plane   with   gaps   of   Δ 1    =   2-4   meV   and   Δ 2    =   9-11   meV.   These   gap   values   are   temperature   dependent.   
  

I NTRODUCTION   

Multi-band  superconductors,  such  as  the  iron  pnictides,  can  exhibit  multiple  energy  gaps  depending  on  the                 
crystal  growth  conditions  and  on  which  tunneling  directions  are  made  accessible  by  the  sample  fabrication  process. 1                  
The  energy  gaps  are  often  anisotropic  with  respect  to  the  crystal  lattice,  corresponding  to  superconductivity  along                  
directions  parallel  or  perpendicular  to  the  c-axis  of  the  lattice. 1,2  We  present  and  discuss  results  of  measurements  of                    
the  energy  gaps  of  single  crystals  of  iron  pnictides  (K-doped  Ba-based  122  family)  using  point  contact                  
spectroscopy.  

Transport  through  a  point  contact  is  classified  into  three  separate  regimes:  diffusive,  quantum,  and  ballistic. 3                 
Each  regime  correlates  to  the  contact  diameter   a   and  the  electronic  mean  free  path  of   l   of  the  contact  material;  the                       
mean  free  path  stems  from  the  successive  elastic  and  inelastic  scattering  of  electrons.  In  the  diffusive  regime,  the                    
sample  size  is  much  larger  than  the  mean  free  path  so  that  transport  is  independent  of  the  form  of  the  system.  In  the                         
quantum  regime,  the  sample  is  similar  to  the  mean  free  path  so  that  edge  and  boundary  effects  dominate.  In  the                      
ballistic  regime,  the  charge  carriers  make  ballistic  motion  while  boundaries  play  the  role  of  scatterer.  Spectra  such                   
as  the  superconducting  energy  gap  has  been  shown  to  be  readable  from  point  contact  data  if  the  interface  between                     
normal  metal  leads  and  the  superconductor  is  in  the  ballistic  regime,  when  heating  effects  are  minimized. 4  It  has                    
been  recently  demonstrated  that  if  the  junction  size  is  reduced  to  the  ballistic  regime,  where  the  electron  mean  path                     
is  longer  than  the  junction  size,  that  conductance  measurements  using  PCS  (Point  Contact  Spectroscopy)  can  be                  
reduced  to  a  simpler  tunneling  model.  This  allows  the  PCS  technique  to  sample  the  effective  density  of  states                    
obtained  from  integrating  over  the  whole  Fermi  surface,  and  has  been  appropriately  applied  to  iron  pnictides  that                   
behave   like   a   non-Fermi   liquid. 4   

Our  measurements  that  use  nanometer-size  gold  wires  pressed  against  crystals  are  ideally  within  the  ballistic                 
regime.  Features  such  as  Andreev  reflections  occur  within  the  point-contact  between  a  normal  metal  N  and  a                   
superconductor  S,  and  i s  a  charge-transfer  process  by  which  normal  current  in  N  is  converted  to  supercurrent   in  S. 1                    
When  the  electronic  energy  of  the  applied  voltage  is  within  the  value  of  the  superconducting  gap  (Fermi  level  of  the                      
superconductor),  the  electron  is  physically  not  allowed  to  tunnel  across  the  two-state  junction  and  as  a  result,  a                    
cooper  pair  is  formed  within  the  superconductor  while  a  hole  is  reflected  back  inside  the  normal  metal.   Thus,                    
identifying  Andreev  reflections   can  reveal  spectroscopic  properties  of  the  superconductor. 4  More  generally,              
measuring  the  differential  conductance   dI/dV  as  a  function  of  applied  voltage   V,   which  is  a  direct  measure  of  the                     
superconducting  energy  gap,   can  show  the  important  spectroscopic  properties  of  the  superconductor  and  give                
insight  into  the  mechanisms  driving  superconductivity  in  these  materials.  This  allows  for  the  probing  of  single-  and                   
multi-gap   structures   of   superconductors   and   serves   as   the   basis   for   point-contact   spectroscopy.     

E XPERIMENTAL     PROCEDURE   

Single  crystals  of  Ba 0.67 K 0.33 Fe 2 As 2  of  high  crystalline  quality  were  obtained  from  collaborators  who  had  grown                 
samples  by  using  the  self-flux  method  with  FeAs  as  flux,  as  described  in  the  literature. 5  The  crystals  were  then                     
cleaved  by  means  of  mechanical  exfoliation  using  Scotch  tape,  to  produce  a  fresh,  shiny  surface.  To  prepare  the                    
samples  for  current-voltage  measurements,  four  soft  point  contacts  were  made  by  controlled  application  of  silver                 
paint   on   nanometer-diameter   gold   wires   set   upon   the   crystals   mounted   on   a   copper   platform.     

 Four  contacts  were  made  in  order  to  implement  four-wire  measurement  technique  designed  to  eliminate                 
contributions  from  lead  resistances. 6  To  access  the   ab- and   c- axes  simultaneously  through  the  crystal,  V-shaped  gold                  
wires   connecting   the   point   contact   are   oriented   between   30-45°   relative   to   the   copper   platform.    

The  sample  was  then  mounted  onto  a  custom-built  sample  holder  thermally  anchored  using  black  Stycast  Epoxy                  
on  the  second  stage  cold  finger  of  a  Janis  Cryocooler  with  a  base  temperature  of  2  Kelvin.  The  second  stage  is                       
covered  by  a  metal  shroud  that  acts  doubles  as  a  2  Kelvin  radiation  shield,  which  is  then  covered  with  a  vacuum                       
can   pumped   down   with   an   Edwards   TS-75   turbomolecular   pump.   

  

  
FIGURE   1 :   (a)   The   Iron   Pnictide   Crystal   sample   (~2mm   across)   was   mounted   on   a   copper   platform.   Soft   point   contacts    were   

made   using   nm-sized   gold   wire   and   silver   paint   (white   dots   centered   on   iron   pnictide   crystal).   (b)   The   sample   holder   was   
thermally   anchored   to   the   second   stage   of   a   Janis   Cryocooler.   

  
At  base  temperature,  a  current  bias  was  provided  by  a  ramped  waveform  generator  and  the  voltage  response  and                    

conductance  were  measured  through  two  Stanford  SR830  low-noise  lock-in  amplifiers  to  reduce  external  noise  and                 
produce  high  resolution  measurements.  A  temperature  series  of  conductance  as  a  function  of  voltage  was  collected                  
through   a   data   acquisition   device   (DAQ)   and   controlled   through   Labview   and   analyzed   using   Python.     

RESULTS     AND     DISCUSSION   

Using  the  four-wire  approach,  the  resistance  of  the  under-doped  iron  pnictide  Ba (1-x) K (x) Fe 2 As 2  where  x  =  0.33,                  
was  measured  and  found  to  have  a  superconducting  critical  temperature  of  38  Kelvin.  This  can  be  observed  in                    
Figure  2,  where  there  is  a  dramatic  change  in  the  magnitude  and  sharpness  of  the  conductance  curve  dI/dV  vs  V.                      
For  temperatures  at  and  below  T c =  38  Kelvin,  there  is  marked  enhancement  of  conductance  in  the  form  of  a  peak                       
while  below  Tc,  the  signal  becomes  rounded  and  progressively  reduced.  Furthermore,  a  temperature  series  of  the                  
conductance  measurements  from  2.0  –  52.0  Kelvin  show  features  in  the  form  of  a  broad  shoulder  and  a  peak.  These                      
features  –  enhancements  in  conductance  are  typically  interpreted  to  correspond  to  superconducting  energy  gaps,  in                 
this  case,  a  small  gap  Δ 1  symmetric  about  2-4  meV  and  a  large  gap  Δ 2  symmetric  about  9-11  meV  (See  Figure  2).                        
These  two  predominant  features  for  Ba 0.67 K 0.33 Fe 2 As 2  are  consistent  with  two  flavors  of  tunneling  along  the  ab                  
plane.  The  insets  of  Figure  2  show  that  the  peaks  move  with  temperature,  which  is  characteristic  of  the  temperature                     
dependence  of  conventional  superconducting  energy  gaps. 1  Looking  at  the  literature,  these  results  are  very  similar                 
to  data  from   P.  Samuely  et  al. 7  that  report  two  energy  gaps  with  similar  values  for  a  nominally  similar  composition                      
of  Ba 0.55 K 0.45 Fe 2 As 2  at  temperatures  below  its  T c  of  30K.  In  2008,   Gonnelli  et  al. 9   also  obtained  two-gap  spectra  on                     
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Abstract.  In  order  to  spectroscopically  probe  the  superconducting  energy  gap  of  potassium-doped  Ba122  iron  pnictides,                 
in  particular  Ba (1-x) K x Fe 2 As 2  where  x  =  0.33  (under-doped  regime),  we  have  performed  four-wire  conductance                
measurements    from  T  =  2K  to  52K .  We  report  evidence  for  multi-gap  features  with  gaps  corresponding  to  directional                    
tunneling  through  the   ab -  axes  of  this  iron  pnictide.  The  multi-gap  features  a  predominant  result  of  tunneling  across  the                     
ab -   plane   with   gaps   of   Δ 1    =   2-4   meV   and   Δ 2    =   9-11   meV.   These   gap   values   are   temperature   dependent.   
  

I NTRODUCTION   

Multi-band  superconductors,  such  as  the  iron  pnictides,  can  exhibit  multiple  energy  gaps  depending  on  the                 
crystal  growth  conditions  and  on  which  tunneling  directions  are  made  accessible  by  the  sample  fabrication  process. 1                  
The  energy  gaps  are  often  anisotropic  with  respect  to  the  crystal  lattice,  corresponding  to  superconductivity  along                  
directions  parallel  or  perpendicular  to  the  c-axis  of  the  lattice. 1,2  We  present  and  discuss  results  of  measurements  of                    
the  energy  gaps  of  single  crystals  of  iron  pnictides  (K-doped  Ba-based  122  family)  using  point  contact                  
spectroscopy.  

Transport  through  a  point  contact  is  classified  into  three  separate  regimes:  diffusive,  quantum,  and  ballistic. 3                 
Each  regime  correlates  to  the  contact  diameter   a   and  the  electronic  mean  free  path  of   l   of  the  contact  material;  the                       
mean  free  path  stems  from  the  successive  elastic  and  inelastic  scattering  of  electrons.  In  the  diffusive  regime,  the                    
sample  size  is  much  larger  than  the  mean  free  path  so  that  transport  is  independent  of  the  form  of  the  system.  In  the                         
quantum  regime,  the  sample  is  similar  to  the  mean  free  path  so  that  edge  and  boundary  effects  dominate.  In  the                      
ballistic  regime,  the  charge  carriers  make  ballistic  motion  while  boundaries  play  the  role  of  scatterer.  Spectra  such                   
as  the  superconducting  energy  gap  has  been  shown  to  be  readable  from  point  contact  data  if  the  interface  between                     
normal  metal  leads  and  the  superconductor  is  in  the  ballistic  regime,  when  heating  effects  are  minimized. 4  It  has                    
been  recently  demonstrated  that  if  the  junction  size  is  reduced  to  the  ballistic  regime,  where  the  electron  mean  path                     
is  longer  than  the  junction  size,  that  conductance  measurements  using  PCS  (Point  Contact  Spectroscopy)  can  be                  
reduced  to  a  simpler  tunneling  model.  This  allows  the  PCS  technique  to  sample  the  effective  density  of  states                    
obtained  from  integrating  over  the  whole  Fermi  surface,  and  has  been  appropriately  applied  to  iron  pnictides  that                   
behave   like   a   non-Fermi   liquid. 4   

Our  measurements  that  use  nanometer-size  gold  wires  pressed  against  crystals  are  ideally  within  the  ballistic                 
regime.  Features  such  as  Andreev  reflections  occur  within  the  point-contact  between  a  normal  metal  N  and  a                   
superconductor  S,  and  i s  a  charge-transfer  process  by  which  normal  current  in  N  is  converted  to  supercurrent   in  S. 1                    
When  the  electronic  energy  of  the  applied  voltage  is  within  the  value  of  the  superconducting  gap  (Fermi  level  of  the                      
superconductor),  the  electron  is  physically  not  allowed  to  tunnel  across  the  two-state  junction  and  as  a  result,  a                    
cooper  pair  is  formed  within  the  superconductor  while  a  hole  is  reflected  back  inside  the  normal  metal.   Thus,                    
identifying  Andreev  reflections   can  reveal  spectroscopic  properties  of  the  superconductor. 4  More  generally,              
measuring  the  differential  conductance   dI/dV  as  a  function  of  applied  voltage   V,   which  is  a  direct  measure  of  the                     
superconducting  energy  gap,   can  show  the  important  spectroscopic  properties  of  the  superconductor  and  give                
insight  into  the  mechanisms  driving  superconductivity  in  these  materials.  This  allows  for  the  probing  of  single-  and                   
multi-gap   structures   of   superconductors   and   serves   as   the   basis   for   point-contact   spectroscopy.     
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E XPERIMENTAL     PROCEDURE   

Single  crystals  of  Ba 0.67 K 0.33 Fe 2 As 2  of  high  crystalline  quality  were  obtained  from  collaborators  who  had  grown                 
samples  by  using  the  self-flux  method  with  FeAs  as  flux,  as  described  in  the  literature. 5  The  crystals  were  then                     
cleaved  by  means  of  mechanical  exfoliation  using  Scotch  tape,  to  produce  a  fresh,  shiny  surface.  To  prepare  the                    
samples  for  current-voltage  measurements,  four  soft  point  contacts  were  made  by  controlled  application  of  silver                 
paint   on   nanometer-diameter   gold   wires   set   upon   the   crystals   mounted   on   a   copper   platform.     

 Four  contacts  were  made  in  order  to  implement  four-wire  measurement  technique  designed  to  eliminate                 
contributions  from  lead  resistances. 6  To  access  the   ab- and   c- axes  simultaneously  through  the  crystal,  V-shaped  gold                  
wires   connecting   the   point   contact   are   oriented   between   30-45°   relative   to   the   copper   platform.    

The  sample  was  then  mounted  onto  a  custom-built  sample  holder  thermally  anchored  using  black  Stycast  Epoxy                  
on  the  second  stage  cold  finger  of  a  Janis  Cryocooler  with  a  base  temperature  of  2  Kelvin.  The  second  stage  is                       
covered  by  a  metal  shroud  that  acts  doubles  as  a  2  Kelvin  radiation  shield,  which  is  then  covered  with  a  vacuum                       
can   pumped   down   with   an   Edwards   TS-75   turbomolecular   pump.   

  

  
FIGURE   1 :   (a)   The   Iron   Pnictide   Crystal   sample   (~2mm   across)   was   mounted   on   a   copper   platform.   Soft   point   contacts    were   

made   using   nm-sized   gold   wire   and   silver   paint   (white   dots   centered   on   iron   pnictide   crystal).   (b)   The   sample   holder   was   
thermally   anchored   to   the   second   stage   of   a   Janis   Cryocooler.   

  
At  base  temperature,  a  current  bias  was  provided  by  a  ramped  waveform  generator  and  the  voltage  response  and                    

conductance  were  measured  through  two  Stanford  SR830  low-noise  lock-in  amplifiers  to  reduce  external  noise  and                 
produce  high  resolution  measurements.  A  temperature  series  of  conductance  as  a  function  of  voltage  was  collected                  
through   a   data   acquisition   device   (DAQ)   and   controlled   through   Labview   and   analyzed   using   Python.     

RESULTS     AND     DISCUSSION   

Using  the  four-wire  approach,  the  resistance  of  the  under-doped  iron  pnictide  Ba (1-x) K (x) Fe 2 As 2  where  x  =  0.33,                  
was  measured  and  found  to  have  a  superconducting  critical  temperature  of  38  Kelvin.  This  can  be  observed  in                    
Figure  2,  where  there  is  a  dramatic  change  in  the  magnitude  and  sharpness  of  the  conductance  curve  dI/dV  vs  V.                      
For  temperatures  at  and  below  T c =  38  Kelvin,  there  is  marked  enhancement  of  conductance  in  the  form  of  a  peak                       
while  below  Tc,  the  signal  becomes  rounded  and  progressively  reduced.  Furthermore,  a  temperature  series  of  the                  
conductance  measurements  from  2.0  –  52.0  Kelvin  show  features  in  the  form  of  a  broad  shoulder  and  a  peak.  These                      
features  –  enhancements  in  conductance  are  typically  interpreted  to  correspond  to  superconducting  energy  gaps,  in                 
this  case,  a  small  gap  Δ 1  symmetric  about  2-4  meV  and  a  large  gap  Δ 2  symmetric  about  9-11  meV  (See  Figure  2).                        
These  two  predominant  features  for  Ba 0.67 K 0.33 Fe 2 As 2  are  consistent  with  two  flavors  of  tunneling  along  the  ab                  
plane.  The  insets  of  Figure  2  show  that  the  peaks  move  with  temperature,  which  is  characteristic  of  the  temperature                     
dependence  of  conventional  superconducting  energy  gaps. 1  Looking  at  the  literature,  these  results  are  very  similar                 
to  data  from   P.  Samuely  et  al. 7  that  report  two  energy  gaps  with  similar  values  for  a  nominally  similar  composition                      
of  Ba 0.55 K 0.45 Fe 2 As 2  at  temperatures  below  its  T c  of  30K.  In  2008,   Gonnelli  et  al. 9   also  obtained  two-gap  spectra  on                     
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the  LaFeAsO 1−x   F x  polycrystals  that  compare  remarkably  well  with  these  values.  In  addition,  two-gap  spectra  were                  
also  observed  in  under-doped  Ba (1-x) K (x) Fe 2 As 2   using  Raman  scattering. 9  On  the  other  hand,  there  have  been                 
observations  of  only  single  energy  gap  features,  using  STM,  in  iron  pnictides  that  are  doped  with  cobalt 10  and                    
potassium. 11   

  
FIGURE   2:     Data   for   Differential   Conductance   dI/dV   vs   Voltage   V   of   iron   pnictide   Ba (1-x) K (x) Fe 2 As 2     where   x   =   0.33   

(under-doped   regime)   and   T   =   2.0   K   to   52.0   K.   Two   gap   values   Δ 1    at   2-4   meV   and    Δ 2    at   9-11   meV   are   suggested   by   the   
shoulders   and   bumps   on   the    conductance   curves.   Similar   features   have   been   observed   in   the   literature   for   other   superconductors.   
The   two   insets   show   that   within   each   gap,   peaks   move   with   temperature,   which   is   characteristic   of   conventional   superconducting   

energy   gaps.   

C ONCLUSION     AND    F UTURE    W ORK   

We  have  performed  PCS  measurements  on  under-doped  iron  pnictide  Ba 0.67 K 0.33 Fe 2 As 2  and  observed  two               
temperature-dependent  features  that  correspond  to  gap  values:  a  small  Δ 1   =  2-4  meV,  and  a  large  gap,  Δ 2   =  9-11                      
meV.  For  future  work,  we  will  plot  the  normalized  superconducting  energy  gap  values  Δ(T)/Δ(0),  where  Δ(0)  is  the                    
gap  at  zero  temperature,  that  should  decrease  with  T/T c ,  and  compare  with  results  of  other  research.  We  plan  to                     
determine  the  common  underlying  factor  shared  by  various  superconductors  studied  by  different  groups  that  exhibit                 
these  similar  two-gap  structures.  Towards  this,  we  plan  to  measure  more  doping  regimes  of  potassium-based  iron                  
pnictide   and   other   doping   types   of   iron   pnictides   such   as   phosphorus   and   cobalt.     
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Abstract.  In  this  research,  we  are  reporting  the  light  curve  of  RR  Lyrae  type  variable  star  TV  Lyn.  This  star  is  observed                        
in  the  northern  hemisphere  and  its  coordinates  are  07:33:31.7  +47:48:09.8.  We  have  used  data  from  Las  Cumbres                   
Observatory  (LCO)  which  consists  of  a  worldwide  network  of  robotic  telescopes.  Photometric  measurements  were                
conducted  using  the  SBIG  6303  0.4-meter  telescope  with  a  field  of  view  of  29’x19’.  Depending  on  what  the  color  of  a                       
star  is  when  different  filters  are  applied  to  it,  the  luminosity  will  change  accordingly.  Our  data  consists  of  four  filters,                      
Bessell  B  (Blue),  Bessell  V  (visual),  SDSS-I  (Infrared),  and  PAN-STARRS-Z  (Near  Infrared).  Results  show  that  this  star                   
has  a  variability  period  of  0.2407±0.002  days,  metallicity  -1.49,  and  located  at  a  distance  of  1362±118  pc.  We  have  used                      
an  estimate  of  the  reddening  E(B-V)  as  0.08.  This  research  is  a  part  of  an  Our  Solar  Sibling  Project  by  an  undergraduate                        
student   with   the   help   of   a   faculty   advisor   and   an   Our   Solar   Sibling   Project   Investigator.   

I NTRODUCTION   

RR  Lyrae  type  stars  are  one  of  the  brightest  representative  variable  stars  in  the  galaxy.  They  are  variable  stars                     
since  they  pulsate.  These  stars  are  older  than  10  Giga-years.  They  are  typically  low  mass  and  found  within  an                     
instability  strip  with  a  temperature  ranging  from  6000  K  to  7250  K  [1].  They  change  internal  temperature  due  to                     
being  compressed  by  gravity  which  causes  photons  to  be  trapped  inside  the  star,  making  the  temperature  rise.  This                    
increases  pressure  within  the  star,  which  then  makes  the  gas  expand  allowing  the  photons  to  escape  and  the  pressure                     
to  release.  The  study  of  these  stars  can  provide  us  information  on  the  distance  and  properties  of  star  clusters.  Their                      
brightness  can  range  from  a  thousandth  of  a  magnitude  to  as  much  as  twenty  magnitudes  over  periods  of  a  fraction                      
of  a  second  to  years,  depending  on  the  size.  There  are  over  150,000  RR  Lyrae  stars  known  and  catalogued,  and                      
many  more  are  suspected  to  be  RR  Lyrae  stars.  The  study  of  variable  stars  allows  us  to  study  the  universe  because                       
stars  are  the  primary  engines  of  cosmic  evolution.  Variable  stars  teach  us  about  stellar  properties  such  as  mass,                    
radius,  luminosity,  temperature,  composition,  and  evolution.  There  are  many  types  of  variable  stars  such  as  Cepheid                  
variables,  Mira  variables,  and  cataclysmic  variables.  Cepheid  type  variable  stars  play  a  major  part  in  determining                  
distances  to  far  away  galaxies  and  determining  the  age  of  the  universe.  Mira  variables  allow  us  to  analyze  the                     
evolution   of   stars   and   Accretion   disks   help   us   to   understand   disk   behavior    [2,3].     

Study  of  RR  Lyrae  stars  can  provide  important  information  on  chemical  compositions  and  dynamical  properties                 
of  old  stellar  populations.  RR  Lyrae  stars  in  Galactic  globular  cluster  (GC)  systems  are  of  particular  importance  to                    
address  the  question  of  the  early  history  and  structure  of  our  Galaxy  [2].  Drake  et  al.  [4,5]  and  Pietrukowicz  et  al.  [6]                       
have  used  RR  Lyrae  stars  to  understand  the  substructures  in  the  Galactic  halo  expected  from  the  theory  of  the                     
hierarchical  structure  formation  and  to  delineate  the  bar  structure  in  the  central  part  of  our  Galaxy.  Lee  et  al  (2014)                      
have  presented  a  high-precision  BV  CCD  photometry  of  RR  Lyrae  stars  in  NGC  6723  galaxy  [7].  They  studied  the                     

RR  Lyrae  star  population  in  NGC  6723  and  estimated  the  distance  scale.  Fitzgerald  et  al  [8]  have  used  photometric                     
methods   to   study   open   cluster   NGC   2215.   

This  research  focuses  on  RR  Lyrae  type  variable  star  TV  Lyn  located  in  Lynx  constellation  and  in  NGC  2770                     
galaxy  in  the  northern  celestial  hemisphere.  The  coordinates  of  TV  Lyn  are:  07:33:31.7  +47:48:09.8.  The  light-curve                  
of  a  stellar  object  is  important  for  astronomical  research  and  studying  this  star  can  provide  concepts  of  distance                    
scale,   formation   process   of   the   galaxy,   age,   stellar   content,   and   metallicity   [8].   

O BSERVATIONS   

We  have  used  photometric  analysis  to  obtain  the  light-curve  of  the  variable  star  TV  Lyn.  Photometry  is  the                    
measurement  of  brightness.  Time  series  photometer  monitors  the  light  variation  from  an  astronomical  object  over                 
the  time.  The  data  contains  a  series  of  images  of  a  stellar  object  over  the  time,  typically  over  different  color  filters  to                        
extract  different  brightnesses  [10].  Inner  and  outer  sky  annulus  and  the  size  of  the  photometry  aperture  are  three                    
main  parameters  for  photometric  analysis.  The  inner  radius  needs  to  be  large  enough  to  include  all  light  from  the  star                      
but  not  too  much  of  the  sky.  The  outer  radius  determines  the  size  of  the  sky  annulus,  this  is  important  because  the                        
sky  is  a  variable  and  changes  over  short  time  intervals.  Aperture  size  of  the  star  can  be  calculated  by  counting  the                       
pixels   that   form   the   center   of   the   star.   
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For  better  representation  of  the  images  of  celestial  bodies  from  telescopes,  astronomers  usually  place  a  unique                  
piece  of  colored  glass  into  the  path  of  light  called  a  filter.  Astronomical  filters  allow  light  of  different  wavelengths  to                      
pass  through  while  also  blocking  unwanted  wavelengths.  Any  set  of  color  filters  with  known  light  transmission                  
properties  is  called  a  photometric  system.  At  present,  there  are  over  200  photometric  systems.  There  are  two  types  of                     
color  filters:  wide  band  and  narrow  band  filters.  Visible  light  photometry  most  commonly  uses  wide  band  filters  by                    
the  names  of  U,  B,  V,  R,  and  I  [10].  The  U  filter  stands  for  ultraviolet  and  allows  light  of  wavelengths  about  320  nm                          
and  400  nm  to  pass  through.  The  B  filter  stands  for  blue  and  allows  light  of  wavelengths  about  400nm  and  500  nm.                        
The  V,  R,  and  I  filters  stand  for  visible,  red,  and  infrared  and  their  respective  wavelength  ranges  are  500-700  nm,                      
550-800   nm,   700-900   nm.     

For  this  research,  we  initially  have  used  images  of  the  star  TV  Lyn  from  Las  Cumbres  Observatory  (LCO)  over                     
the  course  of  5  days  in  U,  B,  I,  and  V  filters.  Figure  1  shows  an  image  of  TV  Lyn  in  the  night  sky  with  a  field  of                              
view  of  29’x19’,  courtesy  of  our  LCO  telescope  data.  Each  filter  needs  a  specific  exposure  time  in  order  to  give  the                       
best  quality,  therefore,  the  4  test  images  had  base  exposure  times  of  12  to  30  seconds.  We  were  able  to  calculate  the                        
desired  exposure  times  of  TV  Lyn  and  requested  2  weeks  of  data  during  the  period  of  January  2020  with  new                      
exposure  times  B:  40s,  V:  5s,  I:  20s,  and  Z:  70s.  LCO’s  SBIG  6303  telescope  recorded  the  light  from  TV  Lyn  with  a                         
CCD  camera  with  a  pixel  scale  of  0.571  (bin  1x1).  This  telescope  has  an  aperture  of  0.4  m.  Around  50  images  were                        
received  and  placed  in  a  google  drive  folder  by  the  Our  Solar  Sibling  Project  Investigator.  As  a  part  of  the  Solar                       
Sibling  project,  a  series  of  automated  python  scripts  were  provided  by  Michael  Fitzgerald  to  calculate  time  period                   
from  the  light  curve  by  observing  how  bright  the  standard  stars  comparable  in  size  to  TV  Lyn  are  and  plotting  it  as                        
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Abstract.  In  this  research,  we  are  reporting  the  light  curve  of  RR  Lyrae  type  variable  star  TV  Lyn.  This  star  is  observed                        
in  the  northern  hemisphere  and  its  coordinates  are  07:33:31.7  +47:48:09.8.  We  have  used  data  from  Las  Cumbres                   
Observatory  (LCO)  which  consists  of  a  worldwide  network  of  robotic  telescopes.  Photometric  measurements  were                
conducted  using  the  SBIG  6303  0.4-meter  telescope  with  a  field  of  view  of  29’x19’.  Depending  on  what  the  color  of  a                       
star  is  when  different  filters  are  applied  to  it,  the  luminosity  will  change  accordingly.  Our  data  consists  of  four  filters,                      
Bessell  B  (Blue),  Bessell  V  (visual),  SDSS-I  (Infrared),  and  PAN-STARRS-Z  (Near  Infrared).  Results  show  that  this  star                   
has  a  variability  period  of  0.2407±0.002  days,  metallicity  -1.49,  and  located  at  a  distance  of  1362±118  pc.  We  have  used                      
an  estimate  of  the  reddening  E(B-V)  as  0.08.  This  research  is  a  part  of  an  Our  Solar  Sibling  Project  by  an  undergraduate                        
student   with   the   help   of   a   faculty   advisor   and   an   Our   Solar   Sibling   Project   Investigator.   

I NTRODUCTION   

RR  Lyrae  type  stars  are  one  of  the  brightest  representative  variable  stars  in  the  galaxy.  They  are  variable  stars                     
since  they  pulsate.  These  stars  are  older  than  10  Giga-years.  They  are  typically  low  mass  and  found  within  an                     
instability  strip  with  a  temperature  ranging  from  6000  K  to  7250  K  [1].  They  change  internal  temperature  due  to                     
being  compressed  by  gravity  which  causes  photons  to  be  trapped  inside  the  star,  making  the  temperature  rise.  This                    
increases  pressure  within  the  star,  which  then  makes  the  gas  expand  allowing  the  photons  to  escape  and  the  pressure                     
to  release.  The  study  of  these  stars  can  provide  us  information  on  the  distance  and  properties  of  star  clusters.  Their                      
brightness  can  range  from  a  thousandth  of  a  magnitude  to  as  much  as  twenty  magnitudes  over  periods  of  a  fraction                      
of  a  second  to  years,  depending  on  the  size.  There  are  over  150,000  RR  Lyrae  stars  known  and  catalogued,  and                      
many  more  are  suspected  to  be  RR  Lyrae  stars.  The  study  of  variable  stars  allows  us  to  study  the  universe  because                       
stars  are  the  primary  engines  of  cosmic  evolution.  Variable  stars  teach  us  about  stellar  properties  such  as  mass,                    
radius,  luminosity,  temperature,  composition,  and  evolution.  There  are  many  types  of  variable  stars  such  as  Cepheid                  
variables,  Mira  variables,  and  cataclysmic  variables.  Cepheid  type  variable  stars  play  a  major  part  in  determining                  
distances  to  far  away  galaxies  and  determining  the  age  of  the  universe.  Mira  variables  allow  us  to  analyze  the                     
evolution   of   stars   and   Accretion   disks   help   us   to   understand   disk   behavior    [2,3].     

Study  of  RR  Lyrae  stars  can  provide  important  information  on  chemical  compositions  and  dynamical  properties                 
of  old  stellar  populations.  RR  Lyrae  stars  in  Galactic  globular  cluster  (GC)  systems  are  of  particular  importance  to                    
address  the  question  of  the  early  history  and  structure  of  our  Galaxy  [2].  Drake  et  al.  [4,5]  and  Pietrukowicz  et  al.  [6]                       
have  used  RR  Lyrae  stars  to  understand  the  substructures  in  the  Galactic  halo  expected  from  the  theory  of  the                     
hierarchical  structure  formation  and  to  delineate  the  bar  structure  in  the  central  part  of  our  Galaxy.  Lee  et  al  (2014)                      
have  presented  a  high-precision  BV  CCD  photometry  of  RR  Lyrae  stars  in  NGC  6723  galaxy  [7].  They  studied  the                     

RR  Lyrae  star  population  in  NGC  6723  and  estimated  the  distance  scale.  Fitzgerald  et  al  [8]  have  used  photometric                     
methods   to   study   open   cluster   NGC   2215.   

This  research  focuses  on  RR  Lyrae  type  variable  star  TV  Lyn  located  in  Lynx  constellation  and  in  NGC  2770                     
galaxy  in  the  northern  celestial  hemisphere.  The  coordinates  of  TV  Lyn  are:  07:33:31.7  +47:48:09.8.  The  light-curve                  
of  a  stellar  object  is  important  for  astronomical  research  and  studying  this  star  can  provide  concepts  of  distance                    
scale,   formation   process   of   the   galaxy,   age,   stellar   content,   and   metallicity   [8].   

O BSERVATIONS   

We  have  used  photometric  analysis  to  obtain  the  light-curve  of  the  variable  star  TV  Lyn.  Photometry  is  the                    
measurement  of  brightness.  Time  series  photometer  monitors  the  light  variation  from  an  astronomical  object  over                 
the  time.  The  data  contains  a  series  of  images  of  a  stellar  object  over  the  time,  typically  over  different  color  filters  to                        
extract  different  brightnesses  [10].  Inner  and  outer  sky  annulus  and  the  size  of  the  photometry  aperture  are  three                    
main  parameters  for  photometric  analysis.  The  inner  radius  needs  to  be  large  enough  to  include  all  light  from  the  star                      
but  not  too  much  of  the  sky.  The  outer  radius  determines  the  size  of  the  sky  annulus,  this  is  important  because  the                        
sky  is  a  variable  and  changes  over  short  time  intervals.  Aperture  size  of  the  star  can  be  calculated  by  counting  the                       
pixels   that   form   the   center   of   the   star.   
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piece  of  colored  glass  into  the  path  of  light  called  a  filter.  Astronomical  filters  allow  light  of  different  wavelengths  to                      
pass  through  while  also  blocking  unwanted  wavelengths.  Any  set  of  color  filters  with  known  light  transmission                  
properties  is  called  a  photometric  system.  At  present,  there  are  over  200  photometric  systems.  There  are  two  types  of                     
color  filters:  wide  band  and  narrow  band  filters.  Visible  light  photometry  most  commonly  uses  wide  band  filters  by                    
the  names  of  U,  B,  V,  R,  and  I  [10].  The  U  filter  stands  for  ultraviolet  and  allows  light  of  wavelengths  about  320  nm                          
and  400  nm  to  pass  through.  The  B  filter  stands  for  blue  and  allows  light  of  wavelengths  about  400nm  and  500  nm.                        
The  V,  R,  and  I  filters  stand  for  visible,  red,  and  infrared  and  their  respective  wavelength  ranges  are  500-700  nm,                      
550-800   nm,   700-900   nm.     

For  this  research,  we  initially  have  used  images  of  the  star  TV  Lyn  from  Las  Cumbres  Observatory  (LCO)  over                     
the  course  of  5  days  in  U,  B,  I,  and  V  filters.  Figure  1  shows  an  image  of  TV  Lyn  in  the  night  sky  with  a  field  of                              
view  of  29’x19’,  courtesy  of  our  LCO  telescope  data.  Each  filter  needs  a  specific  exposure  time  in  order  to  give  the                       
best  quality,  therefore,  the  4  test  images  had  base  exposure  times  of  12  to  30  seconds.  We  were  able  to  calculate  the                        
desired  exposure  times  of  TV  Lyn  and  requested  2  weeks  of  data  during  the  period  of  January  2020  with  new                      
exposure  times  B:  40s,  V:  5s,  I:  20s,  and  Z:  70s.  LCO’s  SBIG  6303  telescope  recorded  the  light  from  TV  Lyn  with  a                         
CCD  camera  with  a  pixel  scale  of  0.571  (bin  1x1).  This  telescope  has  an  aperture  of  0.4  m.  Around  50  images  were                        
received  and  placed  in  a  google  drive  folder  by  the  Our  Solar  Sibling  Project  Investigator.  As  a  part  of  the  Solar                       
Sibling  project,  a  series  of  automated  python  scripts  were  provided  by  Michael  Fitzgerald  to  calculate  time  period                   
from  the  light  curve  by  observing  how  bright  the  standard  stars  comparable  in  size  to  TV  Lyn  are  and  plotting  it  as                        
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phase  vs  magnitude.  The  python  scripts  also  allowed  us  to  observe  apparent  magnitude  and  metallicity  of  the                   
variable  star  in  different  filters.  Some  of  the  standard  stars  used  to  observe  TV  Lyn’s  brightness  were:  LP  162-33,                     
TYC  3409-2065-1,  TYC  3409-2187-1,  and  BD+48  1546  with  Bessell  B  magnitudes  of  11.7,  18.7,  12.8,  12.1,  and                   
11.1   respectively.   

We  obtained  four  light  curves  for  the  star  TV  Lyn  for  the  filters  B,  V,  I,  and  Z.  The  details  of  these  light  curves                          
are   discussed   in   the   results   section   of   this   paper.     

  

FIGURE   2.    Light   curves   of   RR   Lyrae   star   TV   Lyn   over   two   cycles   in   B,   V,   I,   and   Z   filters   

R ESULTS   

Figure  2  shows  the  light  curves  of  the  star  TV  Lyn  for  two  cycles  of  most  likely  period  with  error  bars  in  B,  V,  I,                           
and  Z  filters.  The  error  bars  should  be  based  on  the  variations  of  the  differences  between  the  comparison  and  check                      
star  magnitudes.  Actual  error  could  be  more  than  that  though,  due  to  external  factors.  Based  on  the  shape  of  the                      
sinusoidal  graph,  we  classify  TV  Lyn  as  an  RRc  variable  star  [11].  The  time  period  of  the  star  in  different  filters,                       
with  standard  deviations,  are  shown  in  Table  1.  Theoretical  period-luminosity  of  the  RR  Lyrae  stars  were  used  from                    
Catelan   et   al   [1]   and   Caceres   and   Catelan   [12].   

  
.288 .882logZ .108(logZ)M v = 2 + 0 + 0 2 (1)   

.908 .035logP .220logZM i = 0 − 1 + 0 (2)   

.839 .295logP .211logZM z = 0 − 1 + 0 (3)   

ogZ .765  l = [ H
M ] − 1 (4)   

og (0.638f .362)  [ H
M ] = [ H

F e] + l + 0 (5)   

Where  f  =  10 0.3 (as  provided  by  Our  Solar  Sibling  project),  M v,  M i ,  and  M z  are  the  absolute  magnitude  in  V,  I,  Z                        
filters.  P  is  the  pulsation  period,  Z  is  metallicity.  We  have  used  metallicity  Fe/H  value  as  -1.490  (as  provided  by  Our                       
Solar  Sibling  project).  Absolute  magnitudes  are  calculated  using  metallicity  (Z)  and  time  periods  using  equations  1,                  
2,  and  3.  We  received  excel  files  from  the  python  scripts  containing  calibrated  TV  Lyn  magnitudes  as  well  as                     
differential  magnitudes.  Calibrated  magnitudes  are  exact  measurements  of  a  celestial  object,  whereas  differential               
magnitudes  are  more  variable  because  their  brightness  is  being  compared  with  nearby  stars  of  similar  magnitude.                  

 
  

The  average  time  period  of  all  the  filters  is  around  0.24  days  with  an  error  estimate  of  0.003  days.  The  luminosity  is                        
calculated  with  the  average  of  maximum  and  minimum  values  of  magnitudes.  For  B  it  is  11.87±0.057,  for  V  it  is                      
11.43±0.025,  for  I  it  is  11.34±0.018,  and  for  Z  it  is  11.88±0.011.  Table  1  shows  all  the  time  period  data  with  standard                        
deviation.  In  our  data  we  have  used  an  estimate  of  reddening  E(B-V)  as  0.08  based  on  minimum  variance  in  distance                      
among  V,  I,  and  Z  filters.  The  distance  (d)  of  the  star  TV  Lyn  in  parsec  is  calculated  using  the  theoretical  relation                        
between   absolute   magnitude   (M)   and   apparent   magnitude   (m)   are   shown   in   Table   2.   

  
logdm − M = 5 − 5 (6)   

10d =  ((m M+5) 5)− / (7)   

  

TABLE   1.    Time   periods   in   B,   V,   I,   Z   filters   with   standard   deviation   

  

  

TABLE   2.    Comparison   of   distances   in   V,   I,   and   Z   filters   with   GAIA.   

  

Filter   Wavelength   Period   Standard   Deviation     

B   (Blue)   400-500   nm   0.2407   days   0.002   days     

V   (Visible)   500-700   nm   0.2407   days   0.002   days     

I   (Infrared)   700-900   nm   0.2407   days   0.002   days     

Z   (Near   Infrared)   ~900   nm   0.2406   days   0.002   days     

  Distance     
(parsecs)   

Error   
(parsecs)   

GAIA  1219   73.5   

V   1362   118   

I   1252   73   

Z   1564   64   

Average   (V,   I,   Z)   1393   49   
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FIGURE   3.     Comparison   of   TV   Lyn   distance   from   LCO   data   with   GAIA   telescope.   
  

Table   2   and   Fig.   3   show   the   comparison   of   the   star   TV   Lyn   distance   in   V,   Z,   I   with   GAIA   distance.   GAIA   is   a   
space   observatory   that   measures   the   distance,   position,   and   motion   of   the   stars.   V   and   I   distance   measurements   agree   
with   GAIA   distance   within   the   error   limit,   whereas   Z   and   Average   do   not   [13,14].   

C ONCLUSION   

In  this  paper,  we  have  studied  the  light  curve  of  the  variable  star  TV  Lyn.  We  have  measured  the  time  period  of                        
variation,  distance,  luminosity,  and  metallicity  using  the  robotic  telescope  data  from  LCO.  Our  data  shows  that  TV                   
Lyn  is  an  RRc  type  variable  star  with  a  periodicity  of  0.2407  days.  The  distance  of  the  star  is  1362  parsecs.  The                        
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Abstract. A large molecular machine called the mitotic spindle is responsible for accurate chromosome segregation in eukaryotic 
cells. The spindle consists of protein filaments known as microtubules and microtubule-associated proteins such as motors and 
crosslinkers, which help impart its organization. In the case of the fission yeast S. pombe, these form a single bundle inside the 
nucleus. During spindle elongation, sliding by motor proteins provides an internal source of extensile forces, which are resisted by 
the compressive forces of the nuclear envelope. To probe the sources of this force balance, we cut the spindle using focused laser 
light at various stages of spindle elongation. We find that the spindle pole bodies collapse toward each other post-ablation. While 
this basic behavior has been previously observed, many questions remain about the timing, mechanics, and molecular requirements 
of this phenomenon. Here, we quantify the time scale of the relaxation and probe its underlying mechanism. We demonstrate 
that viscoelastic relaxation of the nuclear envelope cannot explain this phenomenon and provide evidence of active forces as the 
underlying mechanism.

INTRODUCTION

The mitotic spindle machinery is highly conserved across all eukaryotes, likely due to its critical functional role 
of accurately segregating chromosomes between the two daughter cells, ensuring that both have identical genetic 
information. The fission yeast Schizosaccharomyces pombe is an important model organism used in the study of eu-
karyotic cell division because it achieves chromosome segregation with a relatively simple spindle that is stereotyped 
cell to cell and because of its well-developed genetic toolkit. These features make it an ideal model system for the 
mechanical perturbation of the spindle. S. pombe undergoes a closed cell division process [1, 2] - wherein its nuclear 
envelope remains intact - that can be categorized into four morphologically distinct phases defined by the spindle 
length and rate of elongation [3]: 1- prophase and spindle formation; 2- metaphase and anaphase A; 3- anaphase B 
and spindle breakdown. The mitotic spindle (Fig. 1a) is assembled from a single bundle of microtubules [4] and 
microtubule-associated proteins. The elongation phase of the spindle (phase 3) is mainly driven by sliding apart the 
interdigitating microtubules at the spindle midzone via motor proteins [4, 5, 6, 7]. This is a crucial step to move the 
segregated chromosomes as far as possible from each other before the cell itself divides in two.

In the past few decades, laser microsurgery coupled with the use of GFP (green fluorescent protein)-based protein 
markers have been developed as a powerful technique to observe the mechanical response to a controlled intracellular 
perturbation. This approach allows thorough ablation of cellular structures within a spatial resolution of ∼ 500 nm 
and temporal resolution on the order of seconds with minimal off-target damage to the cell [8]. This technique has 
previously been used to probe force balance in the S. pombe spindle, and it was observed that ablation was followed 
by the collapse of the spindle [9, 10]. This previous work hypothesized that extensile forces within the spindle resist 
compressive forces of nuclear envelope and DNA, leading to the collapse of the spindle after spindle ablation. Here, 
we probe this hypothesis by measuring the shape change of the nucleus following ablation. Surprisingly, we find that 
the nuclear envelope’s viscoelastic relaxation fails to account for the spindle collapse. Instead, the change of nuclear 
shape that we observe suggests active pulling from inside the nucleus.

MATERIALS AND METHODS

Schizosaccharomyces pombe strains used in this study are PZ2: h+ GFP-atb2:kanMX ade6- leu1-32 ura4-D18 and 
PZ20: h+ nmt41-GFP-atb2:hpnMX6 + cut11-meGFP:kanMX6. The sources of PZ2 and PZ20 are Chang Lab stock 
FC2861 and a gift of Caroline Laplante, respectively. For growth conditions and media preparations, we adapted 
previously described methods [11]. For imaging, we inoculated cultures from YE5S agar plates into YE5S media and 
grew at 25 ◦C for 12-24 hours before imaging. For PZ20, we then washed three times with EMM5S and further grew 
for 6-18 hours in EMM5S liquid media before imaging.

FIGURE 1. The response of the mitotic spindle to laser ablation and its effect on the nuclear envelope. (a) Experimental schematic. 
To cut the spindle, we target the spindle microtubules (green) in a nucleus (magenta) for laser ablation (red X) and track the response 
of the spindle, the nuclear envelope (orange), and the spindle pole bodies (lime). Arrows indicate the presumed compressive force 
of the nuclear envelope oppose by the extensile force of spindle elongation. (b) Example ablation of spindle expressing GFP-Atb2 
(alpha-tubulin) during phase two of mitosis. Spindle ends (cyan arrows) collapse toward each other after ablation. Top, highlighted 
frames; below, a montage of the spindle following ablation. (c) Change in the pole-to-pole distance overtime for the example 
in (b). (d) Example ablation of spindle expressing GFP-Atb2 and Cut11-meGFP ablated near the midzone during phase two of 
mitosis. Cyan arrows mark the dents appearing at the nuclear envelope and cytoplasm boundary, indicating inward pulling forces 
after ablation. (b) and (d) Dashed lines in the first frames indicate the cell boundary. Scale bars, 2 µm. Timestamps, min:sec. We 

are unable to image during ablation, and the yellow shaded region in (c) indicates this period.

We prepared imaging slides by using a gelatin or agar pad on a microscope glass slide as previously described [12]. 
We then centrifuged 1mL of culture at log phase (verified by measuring optical density) at 3000 RCF using a table-top 
centrifuge, decanted the supernatant, and resuspended the pellet in 20 µL of media. We placed 5 µL of resuspended 
culture on the pad, covered with a coverslip, and sealed with VALAP (1:1:1 Vaseline:lanolin:paraffin).

We performed all imaging at 22 ◦C on a Nikon Ti-E stand equipped with an Andor Dragonfly spinning disk confocal 
fluorescence microscope for GFP imaging and an Andor Micropoint with galvo-controlled steering to deliver 10-15 ns 
pulses at 20 Hz using a 551 nm dye laser as previously described [13, 14].

We performed image analysis using ImageJ to crop and adjust brightness and contrast in all images. We also used 
ImageJ to convert the cropped .tif files t o . avi f or f urther a nalysis. We u sed l inear a djustment f or b rightness and 
contrast and did not use interpolation or compression at any stage. After the initial cropping and adjustment with 
ImageJ, we performed all further analyses using home-built Python codes using the Jupyter notebook environment 
(available upon request). Our software loads in the cropped image stacks as .avi files, records the locations of the 
distal (presumed spindle pole body) ends of the spindles by manual tracking, and calculates the end-to-end Cartesian 
distance over time between these two tracked ends.

RESULTS AND DISCUSSION

To investigate the origin of force balance of the mitotic spindle, we ablated the elongating spindles of live S. pombe 
in n = 73 cells expressing GFP-Atb2 (alpha-tubulin) on three different dates and n = 89 cells expressing GFP-Atb2 
plus Cut11-meGFP on five different dates (Fig. 1a). As previously described [9, 10], cutting the spindle causes the 
fragments to rapidly collapse towards each other (Fig. 1b). We quantified the dynamics of collapse by tracking the
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fragments to rapidly collapse towards each other (Fig. 1b). We quantified the dynamics of collapse by tracking the

(c) (d)

(b)(a)



60    Journal of Undergraduate Reports in Physics • Summer 2021	  

ends of the spindle fragments after ablation and calculated the change in distance between the ends over time. An 
example of the change in pole-to-pole distance over time is shown in Fig. 1c where a sharp decrease in distance 
between the poles is evident.

While previous work [9, 10] hypothesized this behavior as passive relaxation of the nuclear envelope or other 
materials inside of the nucleus (such as chromosomal DNA), its driving force is not yet clear. To test whether nuclear 
envelope relaxation drives the collapse of the spindle after ablation, we ablated cells expressing GFP-Atb2 and Cut11-
meGFP (which localizes to the nuclear envelope) to observe their simultaneous response (Fig. 1d). As shown by 
arrows in Fig. 1d, during the collapse, the spindle fragments pull the nuclear envelope inward with them, creating local 
dents at the boundary between the nuclear membrane and the cytoplasm. Such changes in the membrane morphology 
are inconsistent with the collapse of the spindle driven by the relaxation of tension in the nuclear membrane. This 
result suggests that active pulling forces internal to the spindle, such as molecular motor proteins, may be at play here 
(Fig. 1d), and that the surface tension of the nuclear envelope does not cause the collapse.

Work here demonstrates the power of laser ablation as a tool for investigating the mechanics of cytoskeletal ma-
chinery. While previous work suggested the presence of compressive forces from outside the spindle, the current 
work instead suggests that collapse requires pulling from inside the spindle. However, this does not exclude the pos-
sibility of additional viscoelastic contributions from the nuclear envelope or chromosomal DNA. Furthermore, the 
current work raises new questions regarding the origin of the spindle’s force balance. To fully explain the spindle’s 
mechanical equilibrium, it will be important to determine the dependence of collapse on spindle-based forces, and the 
molecular requirements for this force generation.
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Abstract. A large flux of neutrinos is expected in the forward direction of the pp collisions [1, 3] at the Large Hadron Collider 
(LHC) at CERN. Several experiments have recently been proposed at CERN to detect these neutrinos and discussion has started 
on the possibility of building a Forward Physics Facility grouping many of them. Among the others, the FASER-nu [2] proposal 
consists of a lead+emulsion neutrino detector at a distance of 480 m from the ATLAS interaction region along the tangent to the 
LHC beamline. Old calculations of neutrinos rates in the forward direction were done to leading order in the QCD perturbative 
series. We have included next-to-leading order (NLO) terms in our calculation. We have also studied the effect of incorporating 
a non-perturbative Gaussian intrinsic kT . This kT effect mimics the contribution from missing higher-order terms in QCD cal-
culations. We present the study of uncertainties due to scale variations and Parton Distribution Function (PDF) variations in the 
production rate of D and tau neutrinos in the far-forward Production at the Large Hadron Collider. We compare our predictions 
with the LHCb data with D production in the rapidity range of [2 −4.5] at the LHC. In our studies, for which we consider various 
modern PDF sets, we also include the comparison of predictions obtained by different dynamical central scale assumptions.

INTRODUCTION

Neutrinos are one of the fundamental particles that make up the universe. They are one of the most abundant particle 
in the universe and are also the least understood. The neutrino is a subatomic particle that resembles an electron but is 
electrically neutral and has a very small mass compared to other elementary particles. Neutrinos belong to the lepton 
family in the standard model. Lepton is a family of particles that doesn’t experience strong interactions. Out of the 
four fundamental forces, neutrinos interact only through the weak force and gravity. As the weak nuclear force is very 
short-range and gravitational interaction of the neutrino is extremely weak, they rarely interact with normal matter. 
There are trillions of neutrinos passing through us every second.

Neutrinos come in three flavors: electron, muon, and tau n eutrinos. They are labeled after their charged partners 
within the Standard Model. In charged current neutrino interactions in matter, neutrinos of a given type result in the 
emission of their charged partner. Out of the three flavors, tau neutrinos are the least studied as there is not sufficient 
data available to study them. The collision of proton beams at 14 TeV at the Large Hadron Collider (LHC) produces a 
large flux of hadrons. The hadrons produced in the proton/proton collisions decay further into neutrinos. In particular, 
the decays of D and B mesons produce a large flux of tau neutrinos in the forward direction of the collision; however, 
there have been no experiments to observe these neutrinos. A new set of experiments have been proposed at CERN 
[2]. This paper is about the calculation of the flux of neutrinos in the forward direction at the LHC, along with the flux 
we study the uncertainties in our predictions caused by seven scale variations and Parton Distributions Functions.

The forward region can be understood with the kinematic variable called pseudo-rapidity. Pseudo-rapidity (η) is a 
geometric quantity and is a function of the angle θ with respect to the collision axis as seen in Fig.1. In this project, 
we are exploring the region with η > 6.87 which approximately covers the forward detector coverage for the proposed 
experiments at CERN.

η =−ln(tan(
θ
2
) (1)

There are two problems that arise in the Quantum Chromodynamics (QCD) perturbation theory that is used to cal-
culate meson production in pp collisions: ultra-violet (UV) and infrared (IR) divergences. To includes the higher-order
term in perturbation theory, we come across Feynman graphs with closed loops, that are associated with unbounded
energy. Because of unconstrained energy, the integral associated with such Feynman diagrams tend to diverge. Such
divergences are called UV divergences. These divergences are not physical. The UV divergence are cured by introduc-
ing the renormalization factor (µR). We also encounter Feynman diagrams which include massless particles of energy
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ends of the spindle fragments after ablation and calculated the change in distance between the ends over time. An 
example of the change in pole-to-pole distance over time is shown in Fig. 1c where a sharp decrease in distance 
between the poles is evident.

While previous work [9, 10] hypothesized this behavior as passive relaxation of the nuclear envelope or other 
materials inside of the nucleus (such as chromosomal DNA), its driving force is not yet clear. To test whether nuclear 
envelope relaxation drives the collapse of the spindle after ablation, we ablated cells expressing GFP-Atb2 and Cut11-
meGFP (which localizes to the nuclear envelope) to observe their simultaneous response (Fig. 1d). As shown by 
arrows in Fig. 1d, during the collapse, the spindle fragments pull the nuclear envelope inward with them, creating local 
dents at the boundary between the nuclear membrane and the cytoplasm. Such changes in the membrane morphology 
are inconsistent with the collapse of the spindle driven by the relaxation of tension in the nuclear membrane. This 
result suggests that active pulling forces internal to the spindle, such as molecular motor proteins, may be at play here 
(Fig. 1d), and that the surface tension of the nuclear envelope does not cause the collapse.

Work here demonstrates the power of laser ablation as a tool for investigating the mechanics of cytoskeletal ma-
chinery. While previous work suggested the presence of compressive forces from outside the spindle, the current 
work instead suggests that collapse requires pulling from inside the spindle. However, this does not exclude the pos-
sibility of additional viscoelastic contributions from the nuclear envelope or chromosomal DNA. Furthermore, the 
current work raises new questions regarding the origin of the spindle’s force balance. To fully explain the spindle’s 
mechanical equilibrium, it will be important to determine the dependence of collapse on spindle-based forces, and the 
molecular requirements for this force generation.
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Abstract. A large flux of neutrinos is expected in the forward direction of the pp collisions [1, 3] at the Large Hadron Collider 
(LHC) at CERN. Several experiments have recently been proposed at CERN to detect these neutrinos and discussion has started 
on the possibility of building a Forward Physics Facility grouping many of them. Among the others, the FASER-nu [2] proposal 
consists of a lead+emulsion neutrino detector at a distance of 480 m from the ATLAS interaction region along the tangent to the 
LHC beamline. Old calculations of neutrinos rates in the forward direction were done to leading order in the QCD perturbative 
series. We have included next-to-leading order (NLO) terms in our calculation. We have also studied the effect of incorporating 
a non-perturbative Gaussian intrinsic kT . This kT effect mimics the contribution from missing higher-order terms in QCD cal-
culations. We present the study of uncertainties due to scale variations and Parton Distribution Function (PDF) variations in the 
production rate of D and tau neutrinos in the far-forward Production at the Large Hadron Collider. We compare our predictions 
with the LHCb data with D production in the rapidity range of [2 −4.5] at the LHC. In our studies, for which we consider various 
modern PDF sets, we also include the comparison of predictions obtained by different dynamical central scale assumptions.

INTRODUCTION

Neutrinos are one of the fundamental particles that make up the universe. They are one of the most abundant particle 
in the universe and are also the least understood. The neutrino is a subatomic particle that resembles an electron but is 
electrically neutral and has a very small mass compared to other elementary particles. Neutrinos belong to the lepton 
family in the standard model. Lepton is a family of particles that doesn’t experience strong interactions. Out of the 
four fundamental forces, neutrinos interact only through the weak force and gravity. As the weak nuclear force is very 
short-range and gravitational interaction of the neutrino is extremely weak, they rarely interact with normal matter. 
There are trillions of neutrinos passing through us every second.

Neutrinos come in three flavors: electron, muon, and tau n eutrinos. They are labeled after their charged partners 
within the Standard Model. In charged current neutrino interactions in matter, neutrinos of a given type result in the 
emission of their charged partner. Out of the three flavors, tau neutrinos are the least studied as there is not sufficient 
data available to study them. The collision of proton beams at 14 TeV at the Large Hadron Collider (LHC) produces a 
large flux of hadrons. The hadrons produced in the proton/proton collisions decay further into neutrinos. In particular, 
the decays of D and B mesons produce a large flux of tau neutrinos in the forward direction of the collision; however, 
there have been no experiments to observe these neutrinos. A new set of experiments have been proposed at CERN 
[2]. This paper is about the calculation of the flux of neutrinos in the forward direction at the LHC, along with the flux 
we study the uncertainties in our predictions caused by seven scale variations and Parton Distributions Functions.

The forward region can be understood with the kinematic variable called pseudo-rapidity. Pseudo-rapidity (η) is a 
geometric quantity and is a function of the angle θ with respect to the collision axis as seen in Fig.1. In this project, 
we are exploring the region with η > 6.87 which approximately covers the forward detector coverage for the proposed 
experiments at CERN.

η =−ln(tan(
θ
2
) (1)

There are two problems that arise in the Quantum Chromodynamics (QCD) perturbation theory that is used to cal-
culate meson production in pp collisions: ultra-violet (UV) and infrared (IR) divergences. To includes the higher-order
term in perturbation theory, we come across Feynman graphs with closed loops, that are associated with unbounded
energy. Because of unconstrained energy, the integral associated with such Feynman diagrams tend to diverge. Such
divergences are called UV divergences. These divergences are not physical. The UV divergence are cured by introduc-
ing the renormalization factor (µR). We also encounter Feynman diagrams which include massless particles of energy
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FIGURE 1:: (a) The relation between η and θ : An angle of zero is along the beam axis. Generally, particles in the high pseudorapidity regime 
escape through space in the detector along with the beam axis (forward direction), and this project includes the study of tau neutrino in the 
forward direction. (b) Proton-proton collision: Gluons from colliding proton interact during the collision. Gluon-Gluon interaction produce a 
quark and anti-quark which further produces hadrons like D   meson. D   meson decay into tau neutrinos.±

s
±
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approaching zero. The integral of Feynman diagrams including massless particles with zero energy also diverge. The
divergence due to massless particles is known as Infrared(IR) divergences. The problem of IR divergence is solved
by introducing the factorization factor (µF ). The renormalization and factorization scales (µR,µF ) are defined to be
the factors (NR,NF ) multiplied by the transverse mass mT . We will use use two different definitions for the transverse
mass:

mT =
√

m2
c + p2

T and mT =
√

4m2
c + p2

T ,

where pT is the magnitude of the transverse momentum of the charm quark and mc is the charm quark mass.
The other variable in our calculation is the Parton Distribution Function (PDF). Parton, name given by Richard 

Feynman, refers to particle (quarks and gluons) constituents within the protons, neutrons and other hadrons. In the 
proton/proton collision, what actually happen is that these partons collide with each other as seen in Fig.1a. 
The colliding parton carries a fraction of the momentum of the proton. Parton distributions functions are 
momentum distribution functions of the partons within the proton. They are probability densities to find a parton with 
momentum with fraction x at an energy scale of µ2. We can calculate the hadronic cross section using these PDF.

THEORY

The most important concept in collisions of subatomic particles is their cross section. The word cross section is first 
introduced in mathematics as a intersection between a plane and a three dimensional object. In physics, the word 
cross section also has units of area, but comes from a different consideration. The cross section with units of area 
governs the probability that two particles will collide or interact to produce a certain outcome and is denoted by σ . 
For example, the total cross section for production of tau neutrinos could be written as:

σ =
# of tau neutrinos produced per unit time

Luminosity of protons per unit area per unit time
(2)

The other important term is Luminosity. In the above formula, it can be seen that Luminosity is the ratio of the
number of events detected (N) in a certain time (t) to the cross-section. Using cross section and luminosity, we can

(a) (b)

calculate the number of events (dN/dt events/sec) by the following:

dN/dt = L×σ (3)

As mentioned earlier, we include NLO QCD corrections to the heavy-quark (HQ) production cross section. The
HQ production cross section under perturbative QCD is as follow [4]:

E d3σ
d p3 = ∑i, j

∫
dx1dx2 f H1

i

(
x1,µ2

F
)

f H2
j

(
x2,µ2

F
)[

E
d3σ̂i j(x1PH1 ,x2PH2 ,p,m

2,µ2
F ,µ

2
R)

d p3

]

(4) where fi
H1
(
x1,µ2

F
)

and f H2
j

(
x2,µ2

F
)

are parton distribution functions (PDFs), µ2
F and µ2

R are factorization and
renormalization scales, respectively. As we discussed before, we need to account for mean transverse momentum in
our calculation. We use a Gaussian approximation for transverse momentum in 2 dimensions.

f (
−→
kT ) =

1
π
〈
k2

T

〉e
− k2

T
〈k2

T 〉 (5)

After including the kT effect and integrating over it, the heavy quark production cross section becomes:

E
d2σ

d pzd2 pT
=

∫
d2kT

∫
d2 p

′
T f (

−→
kT )E

d2σ
d pzd2 p′

T
δ 2(−→pT −

−→
p
′
T −

−→
kT ) (6)

The theoretical evaluation of the production of heavy quarks like charm has been studied for quite a long time, and is
already implemented in a computer program called HVQ [5, 6] using the FORTRAN language. We used this program
with some modifications to run simulations in our study. The HVQ code uses the Vegas algorithm [7] to calculate
the integrals for the heavy quark production cross section. As there is no data available in the forward direction for
production of particles, we use LHCb data for the production of D±

s to compare with our theoretical predictions. We
provide predictions by varying three parameters: kT , µ2

F and µ2
R. By varying these parameters, we tried to fit the data

with our predictions using different transverse masses as discussed above. From the previous studies, we found that
kT = 0.7 GeV fit well with the data [8, 9].
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FIGURE 2:Comparison between our predictions and LHCb experimental data on double-differential cross section for D production. Data and 
predictions for different y bins are shifted by 10−m where values of m = 0, 2, 4, 6 and 8. Fig. (a) refers to the central scale NR = 1.0, NF = 2.0 with

with mT=                                                              Fig. (b) shows to the central scale NR = 1.0, NF = 1.0 with mT = 

 colored portion shows the uncertainty band of seven scale variations.
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FIGURE 1:: (a) The relation between η and θ : An angle of zero is along the beam axis. Generally, particles in the high pseudorapidity regime 
escape through space in the detector along with the beam axis (forward direction), and this project includes the study of tau neutrino in the 
forward direction. (b) Proton-proton collision: Gluons from colliding proton interact during the collision. Gluon-Gluon interaction produce a 
quark and anti-quark which further produces hadrons like D   meson. D   meson decay into tau neutrinos.±
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approaching zero. The integral of Feynman diagrams including massless particles with zero energy also diverge. The
divergence due to massless particles is known as Infrared(IR) divergences. The problem of IR divergence is solved
by introducing the factorization factor (µF ). The renormalization and factorization scales (µR,µF ) are defined to be
the factors (NR,NF ) multiplied by the transverse mass mT . We will use use two different definitions for the transverse
mass:

mT =
√

m2
c + p2

T and mT =
√

4m2
c + p2

T ,

where pT is the magnitude of the transverse momentum of the charm quark and mc is the charm quark mass.
The other variable in our calculation is the Parton Distribution Function (PDF). Parton, name given by Richard 

Feynman, refers to particle (quarks and gluons) constituents within the protons, neutrons and other hadrons. In the 
proton/proton collision, what actually happen is that these partons collide with each other as seen in Fig.1a. 
The colliding parton carries a fraction of the momentum of the proton. Parton distributions functions are 
momentum distribution functions of the partons within the proton. They are probability densities to find a parton with 
momentum with fraction x at an energy scale of µ2. We can calculate the hadronic cross section using these PDF.

THEORY

The most important concept in collisions of subatomic particles is their cross section. The word cross section is first 
introduced in mathematics as a intersection between a plane and a three dimensional object. In physics, the word 
cross section also has units of area, but comes from a different consideration. The cross section with units of area 
governs the probability that two particles will collide or interact to produce a certain outcome and is denoted by σ . 
For example, the total cross section for production of tau neutrinos could be written as:

σ =
# of tau neutrinos produced per unit time

Luminosity of protons per unit area per unit time
(2)

The other important term is Luminosity. In the above formula, it can be seen that Luminosity is the ratio of the
number of events detected (N) in a certain time (t) to the cross-section. Using cross section and luminosity, we can
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calculate the number of events (dN/dt events/sec) by the following:

dN/dt = L×σ (3)

As mentioned earlier, we include NLO QCD corrections to the heavy-quark (HQ) production cross section. The
HQ production cross section under perturbative QCD is as follow [4]:
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renormalization scales, respectively. As we discussed before, we need to account for mean transverse momentum in
our calculation. We use a Gaussian approximation for transverse momentum in 2 dimensions.
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The theoretical evaluation of the production of heavy quarks like charm has been studied for quite a long time, and is
already implemented in a computer program called HVQ [5, 6] using the FORTRAN language. We used this program
with some modifications to run simulations in our study. The HVQ code uses the Vegas algorithm [7] to calculate
the integrals for the heavy quark production cross section. As there is no data available in the forward direction for
production of particles, we use LHCb data for the production of D±

s to compare with our theoretical predictions. We
provide predictions by varying three parameters: kT , µ2

F and µ2
R. By varying these parameters, we tried to fit the data

with our predictions using different transverse masses as discussed above. From the previous studies, we found that
kT = 0.7 GeV fit well with the data [8, 9].
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FIGURE 2:Comparison between our predictions and LHCb experimental data on double-differential cross section for D production. Data and 
predictions for different y bins are shifted by 10−m where values of m = 0, 2, 4, 6 and 8. Fig. (a) refers to the central scale NR = 1.0, NF = 2.0 with
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The scale variations (NR,NF) in (µR,µF) = (NR,NF)mT , where mT =
√

m2
c + p2

T are [(1,2), (0.5, 1), (2,4), (0.5,2),
(1,1), (2,2), (1,4)] with (1,2) as central scale choice. The scales variations (NR,NF) in (µR,µF) = (NR,NF)mT , where

mT =
√

4m2
c + p2

T are [(1,1),(0.5,0.5),(2,2),(0.5,1),(1,0.5),(2,1),(1,2)] with (1,1) as central scale choice. By
examining the scale variations, we find the best central scale assumptions of transverse mass with kT . In our studies,
we are using PROSA [10] PDF. The PDF are created using data from Deep Inelastic Scattering (DIS) of leptons and
fit with different models and parameters. PROSA contains 40 variations that account for PDF fit uncertainty, PDF
parameter uncertainty, PDF model uncertainty. The fit uncertainties come from the data that is used to create the
PDF, parameter uncertainties arise from the parameter used to fit the data, and model uncertainties originate from
the assumed model for the fit for the PDF. The total uncertainties are obtained by adding fit, model, and parameter
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FIGURE 3. These figures show the uncertainties in the calculation of cross section of tau neutrinos in the rapidity range from 6.7 < η < 7.5 , 7.2 < 
η < 8.7, and 8.0 < η < 9.2. The selected rapidity ranges represent the forward region of the pp collision.
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2.0), to further study the uncertainties in PDFs for tau neutrino production in the forward region.  Fig. 3 shows 
the uncertainties as bands around the central PDF assumption due to variations in PDFs in the cross section of tau 
neutrinos in the forward region of the pp collision. The majority of the uncertainties are due to model assumptions 
made in creating the PDF. These model assumptions vary from different collaborations who have produced these 
PDFs. The root of the problem arises from the lack of knowledge of the structure of the nucleon. To get better 
estimates of the production rate in the forward direction, we need better understanding of model assumptions for 
PDFs.

CONCLUSION

Neutrinos are mysterious and everywhere around us. Understanding neutrinos is a challenging task as they rarely 
interact with matter. FASER-nu [2] experiment has been proposed to measure the flux of neutrinos in the forward 
direction at the LHC. This paper focused on flux uncertainties using seven scale variations and PDF uncertainties in 
the production of D and tau neutrinos from decays of these meso . According to our results, the calculation of D±

s

double differential cross section with transverse momentum mT =
√
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c + p2

T is the best fit for the LHCb data. The tau

neutrino flux uncertainties with mT =
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T are comparably less than uncertainties with mT =
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T . The
analysis of PDF uncertainties is still under way. According to our initial studies, the dominant part of the uncertainty
is due to the PDF model itself. The studies will continue to examine the various elements of uncertainties due to the
PDFs and find ways to reduce those uncertainties in our calculation.
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Abstract. In this paper, we describe the design, construction, testing, and installation of the cosmic ray trigger 
system used to commission the VerteX Detector (VXD) of the Belle II experiment at the High-Energy Accelerator 
Research Organization (KEK) in Japan. The system consists of two rows of scintillators; with six scintillators 
being on top of the VXD, and six at the bottom of it. The scintillators were characterized (plateaus, threshold 
values, coincidences rate), and when compared with the simulation values a concordant match was found for all 
cosmic coincidence measurements. In Phase 3 of SuperKEKB accelerator, the VXD was the last sub-detector to be 
integrated into the heart of Belle II detector, after it was absent from being integrated within Belle II in Phase 1 
and Phase 2 of SuperKEKB machine studies. A system consisting of VXD prototype parts had been installed, into 
Belle II detectors, at the VXD location during Phase 2 to study background and it was found that the VXD can 
cope with the level of measured background: allowing the VXD to be present during Phase 3 Belle II data taking. 
The VXD was tested with cosmic rays outside of Belle II before it was integrated within Belle II just before Phase 
3 data taking, which commenced in March 2019.

INTRODUCTION

The B-Factories accelerators PEP-II at KEKB at the KEK (Translated from Japanese to be “The High 
Energy Accelerator Research Organization”) center, Japan, and the Stanford Linear Accelerator Center 
(SLAC), USA, have been extremely successful during the period 1999-2010. Belle experiment took data at 
KEKB and BaBar experiment took data at PEP II. Both Belle and Babar contributed to the establishment 
of the theory of Makoto Kobayashi and Toshihide Maskawa[1] who quantitatively explained the observed CP 
violation in the K-meson and B-meson systems. Both M. Kobayashi and T. Maskawa, along with Yoichiro 
Nambu, were awarded the 2008 Nobel Prize in Physics, where Belle and BaBar experiments were cited, in 
the 2008 Nobel Prize of physics press release, as main contributors to this Nobel Prize. We will discuss here 
the construction and installation of a cosmic ray trigger system, at KEK center in Japan, to commission the 
Belle II experiment VerteX Detector (VXD) with cosmic rays before it was integrated within the Belle II

a)Corresponding author: ahalawani0050@stu.kau.edu.sa
b)Electronic mail: rayad@ut.edu.sa

detector. In section 2 we will discuss the apparatus and its components; afterwards we will report in section
III the results of the cosmic trigger system tests done at the bench. Then, in section 4, we will report on
the assembly and studies of the system at KEK center in Japan; finally, data quality will be discussed and
examined in section 5.

APPARATUS

Cosmic rays were used to commission VXD for SuperKEKB phase 3 data taking. Historically, cosmic rays
had been used in the 1940s and 1950s as a source to search for new particles in fixed target experiments.
Later on, in the beginning of 1960s, colliders had been built to reach higher energy collisions and cosmic rays
have been used ever since to test and commission new particle trackers (detectors). Our cosmic ray trigger
system is composed of four main parts; the frame, scintillators (including light-guides), photomultipliers,
and a rack housing a NIM and VME crates with many data acquisition modules. We will elaborate on each
of those components in this section.

The Frame

The VXD cosmic trigger system was designed to house six top scintillators and six bottom scintillators, each
scintillator has dimensions of: 10cm× 30cm× 1cm, as shown in Fig. 1. The cosmic trigger system had been
tested at the bench during spring 2018 and results are shown in section 4. Then the cosmic trigger system
was shipped to KEK to be installed in the VXD commissioning clean room near Belle II IP. The cosmic
trigger system frame is designed to be fixed on the granite threaded table, where VXD sits, with scintillators
surrounding VXD as shown in Fig. 2.

FIGURE 1. A schematic of the VXD cosmic trigger system with six top and six bottom scintillators.

Connections & Data Acquisition

We worked on making the cosmic trigger Data AcQuisition DAQ system automatic enough to control it from 
a host at least at the run control system. However the PMs thresholds, on the CAEN NIM discriminator 
modules, were the only ones not accessible from the host and were adjustable by hand. The cosmic VXD 
raw data are stored within the Belle II DAQ system, however we wrote a standalone DAQ in which we 
monitor and store cosmic scintillators coincidence rates by reading a CAEN VME V830 scaler module.

An overview of the VXD cosmic trigger system DAQ is shown in Fig. 3. The DAQ system is written 
in C/C++ code within a PC under a Linux/ubuntu platform. The CAEN HV SY403 module is connected 
to the DAQ machine, via a RS232-to-USB cable, to automatically ramp- up/ramp-down PMs HVs and 
monitor them together with the currents. PMs signals are first discriminated by CAEN NIM discriminator 
modules (N841), then the discriminated NIM signals are sent to coincidence NIM modules to generate a 
global trigger signal to be sent to Belle II DAQ for cosmic data taking.
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monitor and store cosmic scintillators coincidence rates by reading a CAEN VME V830 scaler module.

An overview of the VXD cosmic trigger system DAQ is shown in Fig. 3. The DAQ system is written 
in C/C++ code within a PC under a Linux/ubuntu platform. The CAEN HV SY403 module is connected 
to the DAQ machine, via a RS232-to-USB cable, to automatically ramp- up/ramp-down PMs HVs and 
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modules (N841), then the discriminated NIM signals are sent to coincidence NIM modules to generate a 
global trigger signal to be sent to Belle II DAQ for cosmic data taking.
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FIGURE 2. Front view (a) and a side view (b) of the cosmic trigger system frame, with its 12 scintillators. The 
pictures also show the way at which the VXD is fixed on the commissioning granite table at KEK.

FIGURE 3. A schematic of the cosmic trigger Rack with all its NIM and VME crates with their electronic modules. 
At the right of the figures is the structure of the cosmic standalone DAQ.

TESTS AT THE BENCH

The cosmic trigger looks like as in Fig. 4 when the scintillators are inserted with PMs. The scintillators had 
been tested before being mounted in the frame two by two on top of each other. Signals were studied and 
plateaus measured as shown in Fig. 5. The operating HV is taken at the beginning of the plateaus to be 
1250 V for the first scintillator and 1400 V for the second scintillator. Finally we measured top and bottom 
scintillators coincidence rates. In particular we measured coincidence rates for one top scintillator with each 
of the six bottom scintillators with all scintillators installed in the frame.

INSTALLATION AT KEK

Once the cosmic trigger system was tested at the bench, it was dismounted and its parts were shipped to 
KEK in June 2018. The scintillators were fixed on the cosmic-ray trigger frame, and then the frame was 
installed inside the VXD commissioning room as shown in Fig. 6. Coincidence rates versus incidence angle, 
of one top corner scintillator with each of the bottom scintillators are shown in Fig. 7 where the x-axis is the 
horizontal shift in cm of the bottom scintillators with respect to one of the top corner scintillators. We used 
a miss-and-hit program (written in C) to simulate cosmic rays coincidence rates between top and bottom. 
Fig. 7 shows that the coincidence rates, following a cosine-square behavior as known, match the simulation 
very well.

FIGURE 4. All scintillators, with PMTs, are Installed in the frame, and tested.

FIGURE 5. Plateaus of two scintillators tested on top of each other.

COSMIC-RAY DATA QUALITY

At the beginning of November 2018, we started taking cosmic data with the VXD in the commissioning 
clean room at KEK, for about 12 days. The global trigger is defined as: OR for all the six top scintillators, 
connected with AND of OR of all the six bottom scintillators. The cosmic global trigger coincidence rate 
had been measured during data taking using a system NIM discriminator and Coincidence CAEN modules 
and a CAEN VME scaler module (V830). We took several runs to measure this global coincidence rate, 
and all runs give stable distribution rates like in Fig. 8. The cosmic rate distribution, in Fig. 8, looks like a 
Poisson Distribution with a mean value of (10.05 +/- 3.12 Hz) matching the simulation result of 10.45 Hz.

We also used the Belle II Analysis Software Framework (basf2) simulation and reconstruction program to 
display cosmic-ray tracks in VXD. An example of such display is shown in Fig. 9 [2, 3, 4]. The cosmic-ray 
track is shown in r-z view (front view) and r-ϕ views (side view).

About 300,000 tracks were reconstructed. A full analysis of these events to align VXD will be discussed 
in a future paper, as this paper discusses only the construction and installation of the Belle II VXD detector 
cosmic-ray trigger system.
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Fig. 7 shows that the coincidence rates, following a cosine-square behavior as known, match the simulation 
very well.
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FIGURE 4. All scintillators, with PMTs, are Installed in the frame, and tested.

FIGURE 5. Plateaus of two scintillators tested on top of each other.

COSMIC-RAY DATA QUALITY

At the beginning of November 2018, we started taking cosmic data with the VXD in the commissioning 
clean room at KEK, for about 12 days. The global trigger is defined as: OR for all the six top scintillators, 
connected with AND of OR of all the six bottom scintillators. The cosmic global trigger coincidence rate 
had been measured during data taking using a system NIM discriminator and Coincidence CAEN modules 
and a CAEN VME scaler module (V830). We took several runs to measure this global coincidence rate, 
and all runs give stable distribution rates like in Fig. 8. The cosmic rate distribution, in Fig. 8, looks like a 
Poisson Distribution with a mean value of (10.05 +/- 3.12 Hz) matching the simulation result of 10.45 Hz.

We also used the Belle II Analysis Software Framework (basf2) simulation and reconstruction program to 
display cosmic-ray tracks in VXD. An example of such display is shown in Fig. 9 [2, 3, 4]. The cosmic-ray 
track is shown in r-z view (front view) and r-ϕ views (side view).

About 300,000 tracks were reconstructed. A full analysis of these events to align VXD will be discussed 
in a future paper, as this paper discusses only the construction and installation of the Belle II VXD detector 
cosmic-ray trigger system.
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FIGURE 6. A view of the cosmic trigger system surrounding VXD, where the top scintillators are seen. The VXD
is the sealed tube in the middle.

FIGURE 7. Coincidence rates of a top corner scintillator with each of the six bottom scintillators. The rates are
found matching the simulation.

FIGURE 8. Global cosmic trigger rate had been continually measured by a VME scaler module from CAEN. The
global coincidence trigger rate, of six top and six bottom scintillators, found to be (10.05 +/- 3.124) Hz matching
the simulation value that is of 10.45 Hz. The distance between top and bottom scintillators is 19.2 cm.

FIGURE 9. A display of a cosmic ray, triggered by our system, in r-z and r-ϕ views.

CONCLUSION

We designed, constructed, tested, and installed the Belle II cosmic trigger system to commission Belle II VXD 
detector at KEK center during fall 2018. The VXD had been assembled in a clean room at KEK before it was 
installed within Belle II detector at the beginning of 2019. We took cosmic-ray data on the VXD, while it was 
outside Belle II detector, showing events display with well reconstructed cosmic tracks which seem to match 
simulation results. Immense effort had been done to align Belle II VXD detector with cosmic rays so as to be 
commissioned before being integrated within Belle II detector. The results will be published soon, though they 
were already presented in conferences [5].

We are preparing ourselves to use this cosmic trigger system to commission the Belle II VXD with its full 
parts during 2021 SuperKEKB shutdown.
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We designed, constructed, tested, and installed the Belle II cosmic trigger system to commission Belle II VXD 
detector at KEK center during fall 2018. The VXD had been assembled in a clean room at KEK before it was 
installed within Belle II detector at the beginning of 2019. We took cosmic-ray data on the VXD, while it was 
outside Belle II detector, showing events display with well reconstructed cosmic tracks which seem to match 
simulation results. Immense effort had been done to align Belle II VXD detector with cosmic rays so as to be 
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trigger hardware parts.
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Abstract. Scientific manuscripts are documents that focus on providing a scientific argument to a specific group. In fact, 
audience selection is potentially the most important decision a science communicator needs to make before preparing a 
manuscript for publication. This document will outline a process to draft a manuscript for the Journal of Undergraduate 
Reports in Physics (JURP), but can also be used for most publications. In this specific case, junior or senior physics majors 
and undergraduate professors are your primary audiences. They are knowledgeable about physics, but unlike you, they 
have not spent much time trying to understand the specific problem being discussed in your report. 

OVERVIEW 

Scientific manuscripts are documents that focus on providing a scientific argument to a specific group. In fact, 
audience selection is potentially the most important decision a science communicator needs to make before preparing 
a manuscript for publication. This document will outline a process to draft a manuscript for the Journal of 
Undergraduate Reports in Physics (JURP), but can also be used for most publications. In this specific case, junior or 
senior physics majors and undergraduate professors are your primary audiences. They are knowledgeable about 
physics, but unlike you, they have not spent much time trying to understand the specific problem being discussed in 
your report.  

There is a big difference between the comments you write in the margin of your lab notebook and what you might 
write in a paper for publication in a scientific journal. Your laboratory data book is a chronological, definitive record 
of everything that you did. It contains all the data, what you did even if it was ultimately wrong, as well as comments 
as to what you were thinking at that time. A journal article is a focused summary discussion of the research question, 
its processes, and conclusions. Authors should avoid discussing experimental dead ends and present a clear scientific 
argument. The reader does not have to be able to completely reproduce the work from the Journal article. Instead, the 
reader should be able to understand both the physics and techniques of what was done and the rationale behind why 
it was done. 

The goal of a journal article is to announce a new finding, idea, or process. Abstracts should provide the key result 
as most readers will only look at titles and abstracts. By using key words and clear abstracts, potential readers locate 
research of interest. If, after reading an article, a reader then wants to find out the finer details of an experiment or 
derivation, they can contact the author of the paper for a personal in-depth conversation about the subtleties.  

The general style of writing used in a physics Journal is different from that of literary works. The narrative of the 
paper is intended to do three things: 1) present the background necessary for the reader to understand the science being 
reported in the paper; 2) outline the details and the implications of your work; 3) lead the reader through the work in 
such a way that they can clearly follow the rationale leading to your conclusions. When finished with your paper, the 
reader should not have to decide for themselves what you are proposing. The narrative should lead readers through 
your work in an unambiguous manner, telling them what to see and understand in what you did. Assist the reader with 
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interpretation of the data and calculations. Presenting a clear interpretation of your results is the most important part 
of the paper. 

You should take care to make sure that the material is presented in a concise and logical way. Make sure that your 
sentences do not have too many dependent clauses. Overly complicated or long sentences make the logic of an 
argument difficult to follow. You should choose a paragraph structure that focuses the attention of the reader on the 
development of the ideas. Paragraphs should connect to each other, as the manuscript is a focused logical argument. 

SECTIONS 

Abstract 

 An abstract is a self-contained paragraph that concisely explains what you did and presents key results. The 
abstract is often published separately from the body of the paper, so you cannot assume that the reader of the abstract 
also has a copy of the rest of the paper. You cannot refer to figures or data that are presented in the body of the paper. 
Since abstracts are used in literature searches, all key words that describe the paper should be included in the abstract. 
Be quantitative with results and keep it to less than 100 words. 

Introduction 

 This section outlines the background necessary to introduce your results. It is not an abbreviated review of what 
you are going to discuss in detail later. This section should present the necessary theoretical and experimental context 
such that a knowledgeable colleague, who is not an expert in the field, will be able to understand the data presentation 
and discussion. If you are going to use a particular theoretical model to extract some information from your data, this 
model should be discussed in the introduction. 

Where appropriate, factual information should be referenced. When presenting background information, you may 
guide the reader to a detailed description of a particular item with the statement such as: "A more detailed discussion 
of laminar flow can be found elsewhere.1" If you know where there is a good discussion of some item, you should not 
repeat it.  

How one proceeds from this point depends upon whether the paper is about a theoretical study or an experiment. 
We will first suggest a format for papers about experimental investigations and then one that describes a theoretical 
derivation. 

Experimental Investigations 

The Experiment 

 This section guides the reader through the techniques and apparatus used to generate the data. Schematic diagrams 
of equipment and circuits are often easier to understand than prose descriptions. A statement such as "A diagram of 
the circuit used to measure the stopping potential is shown in Fig. 6" is better than a long set of words. It is not 
necessary to describe in words what is shown in a diagram unless the average reader would not be able to follow. If 
special experimental techniques were developed as part of this work, they should be discussed here. You should 
separate the discussion of the equipment used to measure something from your results. This section should not include 
data presentations or discussions of error analysis. 

Data Presentation and Interpretation of Results 

 The data are the truths of your work. This section should lead the reader through the data and how errors were 
measured or assigned. The numerical data values should be presented in tables and figures, each with its own number 
and caption, e.g., "The results of the conductivity measurements are shown in Table 3." It is difficult to follow 
narratives when the numerical results are included as part of the narrative. Raw, unanalyzed data should not be 
presented in the paper. All figures and tables should be referred to by their number. Any figure or table that is not 
discussed in the narrative should be eliminated. Items which are not discussed have no place in a paper. 
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Theoretical Studies 

The Model 

 This part should consist of a theoretical development of the constructs used to model the physical system under 
investigation. Equations should be on separate lines and numbered consecutively. The letters or symbols used in the 
equations should be identified in the narrative, e.g., “The potential can be approximated as: 

 
 𝑊𝑊𝑊𝑊 ≈ 𝑍𝑍𝑍𝑍 − 𝜎𝜎𝜎𝜎(𝜌𝜌𝜌𝜌) (1) 

 
where Z is the number of protons and σ is the screening constant that is dependent on the charge density, ρ, of the 
inner electrons of the K and L shells”. If you wish to use this equation at a later time in the narrative, refer to it by its 
number, e.g., "The straight line fit shown in Fig. 3 indicates that Equation 1 can be used to extract a value of..." 

Calculations 

This section presents a summary and discussion of the numerical results calculated from the model. The results 
should be presented in tables or graphs, each with a caption. A table or graph that is not discussed in the narrative 
should be eliminated. Data that are not interpreted by the writer have no place in a paper. Reference numerical results 
that are used in the calculations and come from previous work done by others. 

Conclusion 

In this section, briefly summarize the key result and supporting argument. Be sure to list important quantities and, 
if appropriate, where this research could lead in the future. 

References 

All references, numbered in order of appearance, are collected together at the end of the paper. Note that in most 
cases you do not need to include article titles. Additional formatting guidance for JURP submissions is available on 
the JURP website and AIP Publishing’s website. See the references for examples.1-6 

Other Advice 

Tables and Figures 

In some journals, tables and figures are placed by the layout editors at the corners of the page to make the format 
attractive and easy to read. A figure may not be on the same page as the discussion of that figure. Readers often scan 
papers by looking at the figures and data tables before they read the narrative of the work. For these reasons, each 
table or figure should be numbered and have a descriptive caption. Take care to put enough information in the caption  
that the reader can get some feeling for the meaning of the data presentation. All lines shown on graphs should be 
identified, e.g., "The dashed line is drawn to guide the eye" or "The solid line is a fit to the data using the Ising model." 

An example of a graph of a set of data is shown in Figure 1. The graph is sized by the range of data points. The 
bottom left point does not have to be the origin (0, 0). Error bars must be shown with data points. A graph with all the 
data points clustered in one small corner and lots of white space does not help the reader get a feeling of the dependence 
of your data. Be careful that the figures you present are not too busy; too much information on a figure makes it 
difficult to pick out the important parts. Remember that figures often appear much smaller in print so make sure graph 
fonts are about the same size as in the narrative. Also, color plots could be more expensive to print than black and 
white and not convey the information any more clearly. Black filled vs empty symbols or solid vs dashed lines offer 
high contrast on a plot that will be reduced in size for publication. Figures should have high resolution or they may 
appear blurry. 
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FIGURE 1. A graph of gas temperature versus pressure for an ideal gas at constant volume. The solid line drawn is the least 

squares fit straight line to the data. The dashed line extrapolates to the intercept, with uncertainty, denoting an estimate of 
absolute zero. This figure is adapted from John Taylor's "An Introduction to Error Analysis" 2nd Edition. The figure should be 

centered. To help stay within the space requirement consider having two figures next to each other. If figures have more than one 
part, each part should be labeled (a), (b), etc. 

 
 

TABLE 1. Energy states found in the numerical search. The accepted values for these states are also listed. 

State Experimental eV Theoretical eV 
3S 5.15 ± 0.01 5.13 
4S 1.89 ± 0.02 1.93 
3P 2.96 ± 0.01 3.02 

Numbers and Units 

Any experimentally measured data presented in tables, such as that shown in Table 1, should include uncertainties. 
You should use scientific notation when presenting numbers, (7.34 ± 0.03) x 107 eV. Take care that you have the correct 
number of significant digits in your results; just because the device shows six digits, does not mean that they are 
significant. You should use the MKS system of units. 

Style 

It is often helpful to make an outline of your paper, with figures, before you write it. In this way, you can be sure 
that the logical development of your presentation does not resemble two octopuses fighting, but that it is linear. Often 
the order of your journal notebook is not the same order in which you should present the data. 

One generally writes the report in the past tense. You also should use the third person. Even though you might 
have done the work by yourself, use "we," e.g., "We calculated the transition probability for..." It is often confusing 
when you begin sentences with conjunctions. Make sure that each sentence is a clear positive statement rather than an 
apology.  

There are a few words or phrases you should be careful of using. Fact – this is a legal word and is generally 
avoided in the physics literature. Proof or prove – These words are meaningful in mathematics and you cannot prove 
something in physics, especially experimental physics. The purpose of this experiment is... – Through background 
information we outline the issue we aim to solve. One can easily show that... – Do not intimidate the reader. Remember 
that the reader of your paper is a senior in college! It is obvious that... or One clearly can see.... – Such statements 
only intimidate the reader that does not find your work trivial. Data is the plural form of the noun datum. “The data 
are...”  or “The data show that…”. Human Error – has no specific meaning but instead indicates an unspecified error. 
Errors must be quantified, not swept under a rug and remain unnamed. ‘In order to’ – this phrase can usually be 
replaced with just the word ‘to’. Almost exactly – we do not know how can something be almost and exact at the same 
time 
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Adhere strictly to the template and format guidelines required by the publisher of the journal. The newest JURP 
templates and formatting guidelines are available online.  

Lastly, the journal may request that you suggest reviewers of your manuscript. Reviewers should be as unbiased 
as possible and knowledgeable of the area of physics you are doing. Possible reviewers are scientists that have recently 
published in the same or related areas of physics as your manuscript. Good reviewers will offer helpful criticism of 
your work to improve the manuscript. The journal editor may also offer suggestions to improve the manuscript and 
ultimately has the responsibility to accept or reject your manuscript or revisions for publication. 
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