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ELEGANT CONNECTIONS IN PHYSICS 

If you have ever looked at a streetlight through an umbrella’s fabric and seen a neat array of tiny bright spots; noticed thin 
streaks of light emanating from images of small, bright lights in photographs; or wondered how the metallic mesh in a 
microwave oven door allows visible light but not microwaves to pass, then you have encountered diffraction. Many phys-
ics experiments, from spectroscopy to measurements of the wavelength of laser light, employ diffraction. Diffraction is the signature 
phenomena of wave motion.[1]  
	 In Part 1 of this series on diffraction,[2] we met Huygens’ principle and applied it to the interference produced by two slits, mod-
eled as point sources that coherently radiate equal-amplitude and equal-wavelength harmonic waves. The corresponding experiment, 
first done by Thomas Young in 1801, demonstrated that light is a wave, or, as we would say today, that light behaves as a wave in this 
situation. In our analysis of the Young experiment we observe waves sufficiently far from their source to make the wave-front curvature 
negligible across an aperture. Diffraction with such plane waves is called “Fraunhofer diffraction.” 
	 Working within the Fraunhofer paradigm, here we extend Young’s experiment to multiple point sources. We will go to the limit 
of an infinite number of contiguous infinitesimal point sources to derive the diffraction patterns produced by a single slit as well as 
its complement, an opaque ribbon. That will put us in the position to consider double slits of finite width as a better model of Young’s 
apparatus. The result illustrates the array theorem, which says that the image produced by an array of N identical apertures equals the 

diffraction pattern of one aperture times the interference pattern 
of N point sources.  We will also consider diffraction from all four 
edges of a rectangular aperture and from a circular aperture. 
	 Before leaving plane waves we will discuss what it means to 
say that the image on the screen is the Fourier transform of the 
aperture. For Fraunhofer diffraction, Fourier transforms provide 
the link between waves, aperture, and image.

INTERFERENCE FROM N POINT SOURCES
Consider three point sources equally spaced and separated by 
the distance a. Place a screen some distance z away (Fig. 1). 
Let locations on the screen be mapped by the coordinate y (or 
alternatively, the angle θ), where y = 0 (θ = 0) describes the point 
opposite the source array’s midpoint. Assume the three sources 
emit coherently, and their waves leave in phase.
	 A portion of the signal from each source arrives at location y 
on the screen at time t. The part of the total signal coming from 
source 1 travels along the ray of length r1. The signal from source 
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FIG. 1: The geometry of the three-point-source interference experi-
ment. In practice, z  >> a and y, so that sinθ << 1. Note that the lines 
of length r1, r2, and r3 are then approximately parallel near the slit.
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2 travels the distance r2 = r1 + Δr, and the ray from source 3 has length 
r3 = r1 + 2Δr. Due to the different path lengths, the three signals acquire 
phase differences, causing interference when the signals are added 
together at y.  Assuming equal amplitudes ψo upon arrival,[3] the total 
wave function ψ(y,t) at y is 

  	 ψ(y,t) = ψo [cos(α) + cos(α + δ) + cos(α + 2δ)],   	 (1)

where α = kr1 – ωt and δ = kΔr. Typically, Δr is too small to measure 
directly with a meterstick, but z is large, so θ is small, and Δr  = a sin θ 
≈ a tan θ  = ay/z. 

Our task is to sum the three cosines in an interpretable way. Phasor 
diagrams fall readily to hand. Pretend that Eq. (1) is the horizontal 
component of a vector sum, add the vectors graphically, and then 
evaluate the horizontal component of the resultant to obtain ψ(y,t), as 
in Fig. 2.
	 The condition for the resultant to achieve maximum magnitude 
requires the three vectors to be collinear, corresponding to places on 
the screen where δ = 2nπ, with n = 0,1,2,3….  In these places, ψ = 
3ψocos(α), a primary maximum.  Since one source by itself produces an 
intensity Io proportional to |ψo|

2, the intensity of a primary maximum 
will be 9Io. Zero intensity occurs when the three phasors close back on 
themselves to make a triangle. This requires δ to be one-third of a rota-
tion or a whole number of rotations beyond that, in other words, δ = 
2π(n + ⅓), where, again, n = 0,1,2,3,….  When two of the three phasors 
cancel out, so that δ = (2n+1)π, then I = Io, a secondary maximum.  

  	 Imagine a phasor diagram in which the value of δ can be controlled 
by turning a knob while the intensity is monitored. Steadily increasing 
δ corresponds to sliding the observation point along the y-axis. When 
the three phasors are initially lined up with δ = 0, the intensity is 9Io. 
As δ (and y) increases, the intensity first declines, reaching zero at δ = 
2π/3. The intensity then increases to Io at δ = π, decreases again to zero 
when δ = 4π/3, and increases back to 9Io when δ = 2π. This pattern 
repeats periodically thereafter and is symmetric at about y = 0. The in-
tensity distribution, as a function of position y on the screen, is shown 
schematically in Fig. 3a.  

	 With four equally spaced point sources emitting coherently, the 
four vectors in the phasor diagram predict principal intensity maxima 
of 16Io when all four vectors are collinear, or δ = 2πn. Zero intensity oc-
curs when all phasors cancel at δ = (n+1)π/2. Secondary maxima, when 
three of the four waves cancel leaving I = Io, occur where δ = 2π(n + ⅓).   
(Fig. 3b)
	 One may continue such analyses with N = 5, 6, 7,… coherent, 
equally spaced point sources. The primary maxima occur for δ = 2πn, 
the same as occurs with two point sources.  On the screen, in between 
adjacent primary maxima of intensity N2Io,  one finds N−2 secondary 
maxima of intensity Io and N−1 minima of zero intensity. 
	 When the number of sources per centimeter reaches into the hun-
dreds or thousands, the array is called a diffraction grating. Made with 
fine parallel lines on a transparent sheet (etched into glass, or created 
by photolithography on plastic), each line scatters the incoming light 
and serves as a point source. The energy emerging on the far side of the 
grating becomes concentrated in the well-separated primary maxima 
intensity peaks, leaving negligible the secondary maxima and making 
such gratings useful for spectroscopy by sending principal maxima of 
different wavelengths to widely separated angles.
	 Suppose that along a line of fixed width w the number of point 
sources N is allowed to become arbitrarily large. The spacing between 
adjacent sources must, of course, grow smaller. In the limit as N → ∞, 
the array becomes a slit of finite width. The geometry is similar to that 
in Fig. 1. Let the slit be mapped with a y'-axis, with edges at y' = ±w/2. 
Let the slit and screen be separated by the distance z and locations on 
the screen be mapped with a y-axis. By Huygens’ principle, a seg-
ment of width dy' of the harmonic plane wave passing through the slit 
becomes the source of a new wave dψ. In terms of complex numbers, 
which like phasors have an amplitude and a phase,[4] when this little 
wave arrives on the screen at time t it has the form

	 dψ = dA ei(kr – ωt),	 (2)

where k is the wavenumber and ω the angular frequency of the har-
monic wave, with

		  (3)

FIG. 2: Phasor diagram construction for three coherent point sources, 
where Eq. (1) is considered a component of the vector sum ψ = ψ1  +  
ψ2 + ψ3.

FIG. 3: The intensity pattern of (a) three and (b) four equally spaced 
coherent point sources.

(A) (B)
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The amplitude of dψ can be written as a fraction dy'/w of the amplitude 
Ao that would have been emitted if the entire signal passing through the 
slit were instead sent from a point, so that dA = Ao(dy'/w). At a location 
y on the screen and at a time t, the total wave function ψ(y,t) is the 
superposition of all the infinitesimal Huygens waves,   	
				  
		  (4)

Assuming z >> y and w, to the first order in small parameters, Eq. (3) 
yields
		     		
		  (5)

Denoting kz – ωt = γ, Eq. (4) becomes

                                                                          	 (6)

where sin(x) = (eix − e−ix)/2i has been used and β ≡ kwy/z = 2πwy/λz, 
with λ the wavelength. The intensity distribution on the screen is

                                                    	 (7)

as illustrated in Fig. 4a.  Incidentally, the combination (sin x)/x occurs 
so frequently in diffraction problems that it has been dignified with the 
name “sinc x.”

The first minimum occurs when β = 2π, where y = λz/w, giving 2λz/w 
for the width of the central diffraction peak. The width of the inten-
sity pattern is inversely proportional to the width of the aperture—a 
hallmark of diffraction. 
	 In terms of the small angle θ (Fig. 1), the first condition for a 
minimum requires w sinθ = λ, which answers two questions. First, 
how is the diffraction of visible light, as revealed in such experiments, 
consistent with the observation that we do not readily notice optical 
diffraction in everyday life? Second, why do some radio telescopes use 
metallic meshes for their parabolic reflectors, and how can the doors of 

microwave ovens include a mesh that allows one to see inside without 
the microwaves escaping?
	 In response to the first question, Young’s experiment shows that the 
wavelengths of visible light lie in the range 400–750 nm, thousands of 
times smaller than apertures encountered in everyday life—indeed, a 
thousand times smaller than the diameter of a human hair (~0.1 mm)! 
Thus when λ << w, then sinθ << 1, and all the minima from diffraction 
at a slit’s edge crowd together in the forward direction. That makes the 
separated minima of diffraction hard to see, so the result approaches a 
sharp shadow. 
	 In reply to the second question, the wavelength of microwaves is 
larger than the holes in the mesh: λ > w, so w sinθ = λ becomes the 
absurd relation sinθ > 1. The waves cannot pass through the opening, 
making it a reflector.
 	 That w sinθ = λ describes the first minimum in single-slit diffrac-
tion may seem counterintuitive at first. This relation for the single slit 
often follows soon after a discussion of a sinθ = ½λ, the condition for 
the first minimum in two-point-source interference. Why the factor of 
½ that distinguishes these cases when both describe minima? When we 
muse over it, w sinθ = λ for a minimum holds because of a sinθ = ½λ. 
To see this, subdivide a plane wave passing through the slit into, say, 
600 Huygens sources. When the signals from sources 1 and 300 cancel 
out, then so do those from sources 2 and 301, 3 and 302, and so on, all 
the way through sources 299 and 600.  Pairwise cancellation occurs, 
and, for each pair of sources, (w/2)sinθ = λ/2.
	 Point sources are an idealization; real sources have finite size. 
Consider, then, the diffraction produced by two identical slits, each of 
width w, whose centers are separated by the distance a. The signal ar-
riving at a point y = z sinθ on the screen can be predicted by adjusting 
the integration limits in Eq. (6):

  (8)

Upon evaluating the integrals and squaring the result to obtain the 
intensity on the screen, we find (Fig. 4b),
				  
		  (9)

where δ = ka sinθ and χ = kw sinθ. We recognize cos2 (δ/2) as the two-

FIG. 4: The Fraunhofer diffraction pattern of an (a) single and (b) double slit.
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point-source interference distribution and sinc2(χ/2) as the single-slit 
diffraction distribution. This result for two identical slits illustrates 
a larger result, the array theorem: the Fraunhofer intensity pattern 
produced by N identical apertures equals the diffraction pattern of one 
aperture multiplied by the interference pattern of N point sources.[5]
   	 What happens when we take away the slit and replace it with an 
opaque ribbon of the same width? We can conceptualize the situa-
tion as follows. Begin with an opaque sheet and cut out an aperture. 
By itself, the aperture (e.g., a slit) produces on the screen the wave 
function ψap; by itself the cut-out piece (e.g., a ribbon) produces on 
the screen a wave function ψco. When the cutout fills the aperture, the 
total wave function on the screen vanishes, ψtot = 0. By the superposi-
tion principle, ψtot = ψap + ψco.  Therefore ψap = −ψco. But the intensity 
goes as the wave function squared; hence Iap = Ico, a marvelous result 
known as Babinet’s principle.[6] An experiment you can easily do, as 
my students have done many times, is to measure the diameter of a hair 
from your own head using a laser beam. One industrial application of 
this principle is the manufacture of fine wire in which the diameter is 
continuously checked by passing the wire through a laser beam while 
monitoring the diffraction pattern.  
	 Most readers will have performed in a general physics lab the kinds 
of diffraction experiments we have been describing. The apparatus 
used in such experiments typically consists of a small laser with a beam 
diameter sufficient to illuminate the edges of a slit but not its ends. 
Now let’s shorten the slit or pull the laser back (its beam, too, spreads 
by diffraction) to illuminate all the edges.

 

FRAUNHOFER DIFFRACTION PRODUCED 
BY AN APERTURE
   Consider an aperture of area Γ, uniformly illuminated by monochro-
matic plane waves.  Let the plane of the aperture be mapped with an 
x'y' coordinate system, and let the screen be mapped with xy coordi-
nates (the x'y' and xy planes are held parallel, separated by distance 
z). According to Huygens’ principle, each infinitesimal patch of area 
dx'dy' on the wave front in the aperture radiates a wave dψ. Upon the 
arrival of this wave increment at the screen, it has amplitude dA and an 
acquired phase, so that

		  (10)

where

		  (11)

At location (x,y) on the screen at time t, the total wave function ψ(x,y,t) 
is the superposition of the infinitesimal waves:
				  
		  (12)

where the limits, still to be put on the integral, will describe the ap-
erture. When r is large compared to other length scales, then to first 
order in small quantities,

		  (13)

where ro = [x2 + y2 + z2]½. Denoting kro – ωt = γ, Eq. (12) becomes

                  		            	
		  (14)

in which we have introduced the modulation factor

   		  (15)

with integration limits over Γ understood. If all the signals coming 
through the aperture were instead concentrated at the x'y' origin, then 
Ao e

iγ would be the signal arriving on the screen, where it would pro-
duce the uniform intensity Io ~ Ao

2. The factor ξ(x,y) describes the effect 
of the aperture’s finite size and shape in redistributing the signal across 
the screen. For a rectangular aperture, the integration limits on x' go 
from –a/2 to +a/2, y' goes from −b/2 to +b/2, and Eq. (15) becomes

        	 (16)

and therefore      			 
				  
		  (17)

where α = kax/ro and β = kby/ro (Fig. 5a).
  
When the aperture is a circle of radius a, in the evaluation of ξ it be-
comes convenient to switch to polar coordinates (x' = ρ'cosφ', 
y' = ρ'sinφ’) and similarly for the screen coordinates:
       			 
		  (18)

Noting that the system has rotational symmetry about the aperture 
axis, we may evaluate ξ at φ = 0. The definite integral over φ' offers 
an instance from the family of Bessel functions, which are damped, 
oscillatory, nonperiodic functions that often appear as solutions to 
differential equations in cylindrical coordinates. The acoustics of 
brass, percussion, and woodwind musical instruments, as well as the 
electrostatics of cylindrical charge distributions, are among the many 
examples in which Bessel functions appear. Most of us probably first 
encounter Bessel functions of order μ, denoted Jμ(ρ), as the solutions of 
the differential equation,[7,8]

		  (19)

which does not arise explicitly in our discussion here but offers a 
backdrop to it. Equation (19) emerges as the radial part of the linear 
homogeneous wave equation in cylindrical coordinates,[9] 
				  
		  (20)

which describes locally any wave traveling with speed v and without 
dispersion, for which ψ(x,y,z,t) = ψ(r ± vt). An elegant integral repre-
sentation of the Bessel function of order μ exists:[10]
				  
		  (21)

In terms of a Bessel function, Eq. (18) becomes

		  (22)



22  Spring 2013 / The SPS Observer

ELEGANT CONNECTIONS IN PHYSICS 

Now make a change of variable and borrow a result from tabulated 
integrals of Bessel functions:[11]

		  (23)

to obtain ξ(ρ) = 2J1(κ)/κ, where κ = kρa/ro, to find

		  (24)

This pattern features a central peak of intensity maximum (called an 
Airy disk for the central bright spot that appears on the screen), sur-
rounded by a dark circular line at the intensity minimum and circular 
ripples of intensity maxima and minima outside the first minimum 
(Fig. 5b). The first minimum occurs when κ is the first root of J1(κ) = 0, 
or κ = 3.823.[7,8,10]  In terms of the angle θ, ka sinθ = 3.823, which is 
typically expressed by relating the aperture diameter to wavelength: 		
		
		  (25)

	 When the circular aperture is replaced by a circular disk of the 
same diameter, Babinet’s principle predicts a bright spot directly 
behind the disk, in the region that would, but for diffraction, be in 
shadow! This “unexpected” bright spot is called Poisson’s spot, named 
after Siméon D. Poisson, thanks to an incident of intellectual dispute 
that occurred between him and Augustin Fresnel in 1818—therein lies 
an amusing story.[12]
	 If two sources close together are viewed from a large distance away, 
diffraction sets a limit on how well they can be resolved, that is to say, 
distinguished from a single source. A simple criterion put forward by 
Lord Rayleigh says that the two circular apertures can be resolved if 
the center of the Airy spot from one aperture lands on top of the first 
minimum from the other aperture.[13] The critical angle at which this 
occurs satisfies Eq. (25). If θ > sin−1(1.22λ/2a), then the two apertures 
can be resolved. Familiar applications include distinguishing two stars 
(e.g., the double star Mizar in the handle of the Big Dipper), and the 
two taillights of a distant car, when the pupil of your eye is the aperture. 
Diffraction places a limit on what we can expect from an optical system 
consisting of radiation, an aperture, and an image.

FRAUNHOFER DIFFRACTION AS A  
FOURIER TRANSFORM
We can formally generalize the aperture-image, diffraction-limited 
relationship in the Fraunhofer far-field zone. The crucial insight comes 
from an appreciation of Fourier transforms that gives one the choice 
between describing a signal in terms of its spatial-temporal variation, 
or in terms of its mixture of harmonic frequencies. 
	 Any signal that is periodic with period T in time, or period λ in 
space, can be written as a harmonic series of sines and cosines, with 
each contributing frequency an integral multiple of the fundamental 
temporal frequency ω = 2π/T or of the fundamental spatial frequency 
k = 2π/λ.  For instance, imagine freezing a wave in space at the instant 
t = 0.  One side of Fourier’s theorem says that, given the amplitudes  
An and Bn, one synthesizes ψ(x) according to

				  
		  (26)

For this to be meaningful the inverse problem must be solved, and 
the theorem goes on to show that, given ψ(x), the amplitudes of the 
harmonics are
				  
		  (27)

and similarly for Bn, with the sine replacing the cosine. A nonperiodic 
signal, or wave pulse, can be modeled by first giving it a finite period 
and then taking the limit as the period goes to infinity. Using complex 
forms of the trig functions through eiθ = cosθ + i sinθ, and assuming 
the superposition principle holds, a nonperiodic wave can be written 
as a superposition of harmonics.[14]  However, because such a wave 
is unbounded, it no longer has a fundamental frequency. The sum 
over frequencies becomes continuous. For instance, looking again at 
the signal frozen in space, in this limit and in the language of complex 
numbers Eq. (26) becomes
 	        			 
		  (28)

FIG. 5: The diffraction of (a) a square aperture and  (b) a circular aperture.

(A) (B)
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where ζ(k) is the amplitude of the harmonic of wavenumber k (see 
below). Conversely, given ψ(x) one can find the spectrum of amplitudes 
ζ(k). For the inverse problem, define ζn = ½(An − iBn), then take the limit 
as λ → ∞. Equation (27) and its counterpart for Bn give together

	        	 (29)

Go back now to the integral of Eq. (6) and set t = 0, so that before being 
evaluated the integral says
       			 
		  (30)

Let κ = k/zy′, allow Ao to become a function ζ of y', and hence a function 
of κ (so it gets pulled back behind the integral sign), absorb remaining 
constants into the amplitude ζ(κ), and integrate over the entire κ-axis by 
allowing w → ∞.  Now Eq. (30) becomes

                                    	 (31)

the synthesis side of a Fourier transform. Given the distribution of am-
plitudes ζ(κ) along the κ (and thus y') axis, one can do the integral and 
find the wave function on the screen. For instance, if ζ(κ) = Ao for w/2 
≤ y' ≤ w/2 and ζ(κ) = 0 for |y'| > w/2, then the result following Eq. (6) is 
recovered. The smaller the value of w, the wider the spread of the pattern 
on the screen, and vice versa. That is the diffraction limit.

BEYOND THE DIFFRACTION LIMIT
Diffraction ultimately limits the resolution of a telescope, microscope, 
camera, or eye. In less-familiar settings, the ability of a computer chip 
manufacturer to further reduce the size of circuits that are made by 
mask-and-etch techniques [15] is also diffraction limited. This limit 
must be appreciated if we are to have a realistic understanding of what is 
possible, in principle, for imaging. 
	 However, the diffraction limit is not absolute, being susceptible to 
loopholes offered by quantum mechanics. One example of a quantum 
loophole is the tunneling effect, in which a particle’s probability to pass 
through a classically forbidden potential barrier is not zero but is expo-
nentially damped. Another example is  the Hawking mechanism of black 
hole evaporation, where, due to the Heisenberg uncertainty principle, 
vacuum fluctuations just outside a black hole’s event horizon can occa-
sionally produce a particle–antiparticle pair and one member of the pair 
escapes.
	 One can move the source and image close together into the near-
field region, eschewing the Fraunhofer far-field region. In this setting, 
if the apertures are about the same size as the object being imaged, 
the latter can be imaged at a resolution below the diffraction limit. For 
example, if light is sent one photon at a time through a thin extruded 
optical fiber with a diameter on the nanometer scale, and if those pho-
tons hit a molecule and make it fluoresce, then an array of fluorescing 
molecules offers an image in which the diffraction resolution limit has 
been bypassed.[16]  
	 Another method for beating the diffraction limit uses stimulated 
emission, whereby an originally excited molecule is induced to de-excite 
by the passage of an appropriately tuned incoming photon. One begins 
this process by passing a laser pulse through a lens to make the light 
mimic a point source as closely as possible, then shining the light on a 

sample. This excitation pulse excites target molecules into fluorescence. 
The pulse is followed by another one whose frequency is tuned to cause 
stimulated emission, de-exciting those molecules. To circumvent the 
diffraction limit, the de-excitation pulse is split into two beams with 
a relative offset Δκ [the κ of Eq. (24)]. The beams’ two Airy disks land 
outside the Airy disk of the original excitation pulse. The central peak 
survives the de-excitation, leaving a pattern smaller than it would have 
been if limited by diffraction.[17] 
	 In the next installment we will consider Fresnel diffraction, wave 
physics in the near zone that takes into account the curvature of wave 
fronts.  //
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