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ELEGANT CONNECTIONS IN PHYSICS 

 
When Thomas Young presented his wave theory of diffraction before Great Britain’s Royal Society on January 16,1800, it 
was coolly received.  One historian of physics writes[1]  

“…the wave theory might have suffered sterility and oblivion had not sounder critics revived it in France.  In 1815 Augustin 
Fresnel, a brilliant young military engineer and mathematician, submitted to the Academy a paper on diffraction, which, as 
was the custom of that learned body, was reported upon by two members—François Arago and Louis Poinsot.  The former 
took up the matter with great enthusiasm and drew Fresnel’s attention to the almost identical views of Young published 
fifteen years previously.  Although this was the year of the battle of Waterloo, Fresnel paid a generous tribute to Young and 
they corresponded frequently until the year 1827 when the death of the former put an end to a career full of great promise.”

	 Parts 1 and 2 of this series[2,3] considered diffraction produced by plane wave fronts—Fraunhofer diffraction.  Its signature 
phenomena include Young’s famous double-slit experiment, which demonstrated the wave nature of light.  But of course there is more 
to the story.  An unobstructed wave front radiating from a point source forms an expanding spherical surface.  Fresnel diffraction takes 
into account this spherical shape, and I would be remiss to not discuss it, and show how to derive it, in this summary of the basic ele-
ments of diffraction theory.  
	 As in the plane wave paradigm, Huygens’ principle forms the working tool for understanding Fresnel diffraction.  The principle 
holds that each infinitesimal patch of surface on a primary wave front may be considered the source of a secondary wave.  The signal 
subsequently detected at a point P beyond the surface is the superposition of those secondary waves that reach P.
	 Consider a point source S that radiates a monochromatic wave of angular frequency ω, so that the signal leaving S is proportional 
to cos(ωt).  It is sufficient to consider a monochromatic harmonic wave because, so long as the wave equation is linear, any wave can 

be written as a superposition of harmonics. Picture the spherical 
wave front when it has expanded to radius ρ, and formed a spheri-
cal surface σ.  Because of energy conservation, the amplitude of 
a spherical wave drops off as the inverse of the distance from the 
source.  The spherical wave front at σ carries time-dependence cos 
[ω(t-ρ/c)] with amplitude ~ 1/ρ, as described by the wave function 
		

(1)

where k = 2π/λ denotes the wavenumber, and λ the wavelength.  
The coefficient ℇo, determined by the source’s luminosity L, will 
be considered known; in particular, for a light wave,  
ℇo= √(L/2πϵoc) .[4]  
	 On another spherical surface σ’ centered on S but having 
radius ρ + ro (see Fig. 1), i.e. a surface that includes point P, Eq. (1) 
says that for the wave front passing over P, 

	 (2)
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!
!
] with amplitude ~ 1/ρ, as described by the wave function  

 
  ψ(ρ,t) = ℇ!

!
cos !" −   !"      (1) 

 
where k = 2π/λ denotes the wavenumber, with λ the 
wavelength.  The coefficient ℇ!, determined by the source’s 
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light wave, ℇ! =    !/2!!!! .[4]   
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  ψ(ρ + ro ,t) = ℇ!

!!!!
  cos  [!(! +  !!) −   !"].    (2) 

 
 
 
 
 

Fig. 1. The geometry of the Fresnel diffraction  analysis.  
Please note the distances ρ = !", r = !", ro =   !", the angles 
φ and θ, and the annular ring of area da = (2πρ sinφ)(ρ dφ). 
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   Now return to Huygens’ principle. Each little patch of area 
on the spherical surface σ, such as the one at a typical point H 
as shown in Fig. 1, serves as a source of a secondary wave. 
The signal increment !" that leaves H at time zero arrives at 
P at time t > 0 with an amplitude modified from that of Eq. 
(1), is 
 
 dψ(H→P) = ℇ!    !(!)  !"

!
  cos  [!(! + !) −   !"]   (3) 

 
where ℇH depends on ℇo; relating them forms one of our tasks. 
The factor K(θ) (see θ in Fig. 1), called the “obliquity factor,” 
was originally included ad hoc by Fresnel because of his 
intuition that the amplitude of the signal that makes it from H 
to P depends on θ. To see the need for this, look at the 
extremes on the surface σ. The da at O will assuredly send 
signal towards P, but signal radiated from the da located at O’ 
never arrives at P. Evidently, K(0) = 1 and K(π) = 0. A 
function that exhibits this behavior is 
 
! ! =    !

!
1 + cos ! .    (4) 

 
But until demonstrated rigorously, this expression merely 
offers a plausible candidate for describing Fresnel diffraction. 
We may assume, however, that K(θ) will change very slowly 
especially for small θ because cos! ≈ 1 − !

!
!!. Although 

Fresnel’s intuition was sound, an obliquity factor derived with 
rigor had to await some 60 years, until Gustav Kirchhoff 
published in 1883 a diffraction theory based on the 
differential equations of waves. 
   The conceptual distinction between Eqs. (2) and (3) raises 
basic questions: Why bother with the Huygens surface σ in 
the first place? Why not merely go with Eq. (2) and be done 
with it? After all, integrating Eq. (3) over σ must reproduce 
Eq. (2).   
   That’s a good question. If spherical waves always traveled 
unobstructed from S to P then Huygens’ principle would 
indeed be a redundant complication. But neither would there 
be much interest in diffraction, where the interesting results 
arise in the interactions of waves and apertures. The 
superposition of Huygens secondary waves that get through 
an aperture makes possible the calculation of diffraction 
patterns. The aperture problem is what we intend to solve, 
taking into account the curvature of the wave front. Thus the 
spherical wave front of interest will be the one with a radius ρ 
that places its surface at the aperture.   
 

 
Fresnel Zones 
 
   At first glance, our task may appear rather simple. To 
predict the diffraction pattern produced by an aperture, we 
could merely integrate Eq. (3) over limits defined by the 
aperture boundary, it would seem. However, the finite speed 
of the wave (e.g., c for light) offers a subtle complication.  
Let’s approach it this way: If the source S emits a flash of 
light of infinitesimal duration, in the reference frame of S that 
flash arrives at all points on σ at a time we may set to zero.  
What does the observer at P (assumed to be at rest with 
respect to S) detect? Nothing at all for 0  < t < ro/c. Then at 
the time ro/c the first light arrives at P, the light from point O.  
After the signal from O sweeps by, subsequent signals arrive 
later at P from other locations on σ. A secondary signal 
leaving a point on σ at the distance r from P (see Fig. 1) 
arrives at t = r/c. The last light to arrive at P from σ occurs as 
t → (ro + 2ρ)/c, when some fraction of the signal from the 

“back side” of the sphere makes it to P (signal from O′ at θ = 
π never reaches P). How do we account for this time delay 
when S emits a sinusoidal wave continuously? Here the 
Fresnel zones fall readily to hand. 
   The Huygens analysis of spherical wave fronts with 
strengths that oscillate harmonically proceeds by partitioning 
σ into a set of Fresnel zones centered on the “north pole” at O.  
By definition, the vibrations from the inner and outer 
boundaries of a zone are half a cycle out of phase when they 
arrive at P. To map them in terms of the r of Fig. 1 and the 
wavelength λ, let r1 = ro + λ/2, r2 = ro + λ, r3 = ro + 3λ/2, etc.  
All points on σ for which r lies between ro and r1 are within 
the first Fresnel zone, those for which r1 ≤ r ≤ r2 lie in the 
second Fresnel zone, and so on.   
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Fresnel zones. 
 
    Consider the situation when S continuously emits a 
sinusoidal wave. Suppose that at time t = ro/c a wave crest 
from O sweeps over P. At the same instant, a wave trough 
from r1 will be passing through P, and another wave crest 
from r2 will be at P, and so on. At any time, the signals 
arriving at P from boundaries of adjacent Fresnel zones will 
be half a cycle out of phase. Their amplitudes at P diminish 
with larger rn, thanks to the varying r and the obliquity factor. 
     Let us prepare to integrate Eq. (3). For an infinitesimal 
area da consider an annular ring on Fig. 1 for which da = 
(2!" sin !)(! !"). For fixed ρ, da may be written terms of r 
with the help of the law of cosines applied to triangle SHP, 
 
!! =   !! +  (! + !!)! − 2! ! + !! cos !, for  (5) 
 
from which 
 
!" = !!"#  !"

!!!!
.    (6) 

  
   Now consider an aperture of area Γ, located at O and 
oriented with the aperture plane perpendicular to the SP axis.  
The number of Fresnel zones N (assumed for simplicity to be 
an integer) that pass through the aperture follows from 
 
!! +  !! + ⋯!! =   Γ    (7) 
 
where An denotes the area of the nth Fresnel zone. Its value 
follows by integrating Eq. (6) from rn−1 to rn, so that 
 
!! =   

πρλ!!
ρ!!!

1 +   !
!!!

2! + 1 .    (8) 

 
Whenever λ << ro (typical for visible light and macroscopic 
apertures), then An becomes approximately independent of n: 
 
!!     ≈   

!"#!!
!!!!

  .    (9) 

FIG. 2: Fresnel zones.

FRESNEL ZONES
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For instance, with a circular aperture of radius a, Eq. (7) gives 
 
! =   !!

!

!!
=    !

!

!
  (!
!
+    !

!!
).   (10) 

 
Numerically, if ρ = ro = 1 m, λ = 600 nm, and a = 1 mm then 
N ≈ 3; but if a = 1 cm then N = 333. Seen another way, if ρ = 
ro then the distance ro that allows only the first Fresnel zone to 
pass is !! =   

!!!

!
, which, for a ~ 1 mm and λ ~ 500 nm gives ro 

~ 4 m! At larger values for ro and ρ, only a fraction of the first 
Fresnel zone, approximately flat, passes through the aperture.  
The situation reduces to the Fraunhofer diffraction of plane 
waves for which ρ → ∞. 
   Before continuing discussion with this or that aperture, let 
us investigate the contribution at P of just one Fresnel zone.  
The signal !! arriving at P from the nth Fresnel zone follows 
by integrating Eq. (3) over that zone only: 
 
 !! =

!!!ℇ!
!!!!

!! ! cos ! ! + ! − !"   !"!!
!!!!

    (11) 

 
where in general θ is a function of r. But K(θ) varies slowly 
with θ, so it may be safe to assume that, within any single 
Fresnel zone, its obliquity factor Kn is approximately constant.  
Then Eq. (11) can be integrated at once: 
 
 !! =

!!!ℇ!  !!
! !!!!

  [sin ! + !" − sin ! + ! − 1 !)  

  
        = !!  (−1)!!!  !!   (12) 
 
where k = 2π/λ, α = k(ρ + ro) – ωt, and  
 
!! =

!!"ℇ!  
!!!!

  sin[! ! + !! −   !"].     (13) 
 
   As we anticipated, the signal !(!) that passes through P at 
time t, coming from Fresnel zones 1 through N, forms an 
alternating series: 
 
!(!) =   !!   (−1)!!!  !! !   !

!!!   
 
                 =   !!  [  !!   −   !! +  !! −  …+ (−1)!!!!!]  
 
         ≡   !!!!.                                                     (14) 
 
Because Kn varies slowly with θ, we may assume that Kn+1 ≈ 
Kn. In that case, should N be an even number, then !(!) ≈ 0. 
But for odd N one obliquity factor survives. The Kn are not all 
exactly equal, because K(θ) does diminish with increasing θ.  
This ambiguity presents us with a technical problem.  
Consider, for example, the case N = 5, for which 
 
!! =   !! −  !! +  !! −  !! +  !!  .  (15) 
 
To make use of the near-cancellation of adjacent obliquity 
factors, should Z5 be grouped as 
 
!! = !! −  !! + !! −  !! +  !!     ≈   !!,  (16) 
 
or as 
 
!! =   !! −   !! −  !! −   !! −  !! ≈   !!,   (17) 
 
or in some other way? In the absence of an explicit obliquity 
factor the sum is ambiguous. Pending a justification of a 
result like Eq. (4), we have to make use of the decreasing 

nature of K(θ) and consider averages under various alternative 
grouping scenarios. Requiring consistency offers as an 
estimate the median value between the first and last obliquity 
factors[5] 
 
!!   ≈

!
!
!! +  !! .     (18) 

 
   The intensity (or “irradiance”) at P is proportional to |ψ|2.  
Slide the detector (move point P) along the SP axis, and a 
series of intensity maxima and minima appear as !(!) passes 
through successively odd and even values of N.  
   Since adjacent Fresnel zones tend to cancel one another, 
Fresnel zone plates can be constructed, typically by 
photographic reduction. These are masks consisting of 
concentric opaque rings that block out either the even Fresnel 
zones or the odd ones. For example, should all the even zones 
be blocked and an aperture allow no more than 10 zones to 
pass, then the total signal arriving at P would be that of the 
odd-numbered zones 1 through 9. Assuming all their obliquity 
factors to be near unity, 
  
! ≈   !! +  !! +  !! +  !! +  !!.    (19) 
 
Since each !! ≈ !! for small n, in this example !   ≈ 5!!, 
giving an intensity 25 times that of the first Fresnel zone by 
itself![6]   
   A special case of an aperture would be no aperture at all!  
Then N  becomes very large. The number of Fresnel zones 
across the entire sphere is Nall  = 4ρ/λ, which follows by 
counting the Fresnel zones between O (r = ro) and O’ (r = ro 
+ 2ρ). For instance, N ~ 105 for a sphere of 1 cm radius with λ 
= 400 nm. At least for waves in the optical portion of the 
spectrum, including all the Fresnel zones across the entire 
sphere suggests taking the limit as N → ∞. Because K∞ ≈ K(π) 
= 0, it follows from Eq. (18) that Z∞ ≈ ½K1.   
   So far this result has been shown to hold only for odd N.  
The case of even N must also be worked out. For large N one 
finds the same result[5], which might be expected because the 
difference between one more or one fewer Fresnel zone 
makes no difference as N → ∞. Therefore all Fresnel zones 
contributing to the signal at P (no aperture) yields the elegant 
result 
 
!!""   ≈   

!
!
  !!                              (20)                          

 
where !! ≈ 1  has been used. About one-quarter of the 
intensity of the unobstructed wave comes from the first 
Fresnel zone. 
   It is interesting to note from Eq. (14), that by separating the 
first Fresnel zone’s contribution from all others, 
 
!(!) =   !! +  !(!  !!)   (21) 
 
then for large N and from Eq. (20) it follows that 	
  
!(!  !!) ≈   −

!
!
!!. Blocking out the first zone of an otherwise 

unobstructed wave produces a wave function inverted relative 
to !! and carrying half its amplitude. This is the Fresnel 
diffraction version of the famous Poisson spot, mentioned 
earlier[3] in the context of its Fraunhofer analog that applied 
Babinet’s principle. 
   Now we can relate the ℇ! of Eq. (3) to the ℇ! of Eq. (2). 
Using Eqs. (13) and (20) and K1 ≈ 1, the unobstructed wave 
function arriving at P, due to all the Huygens secondary 
sources on σ, is 



28  Fall 2013 / The SPS Observer

ELEGANT CONNECTIONS IN PHYSICS 

!!"" =   
ℇ!  !"
!!!!

sin ! ! + !! −   !" .   (22) 
 
Comparing this amplitude to that of Eq. (2) requires   
 
ℇ! =   

ℇ!
!"

     (23) 
 
so that, for the unobstructed wave, 
 
!!"" ≈   

ℇ!  
!!!!

  sin[! ! + !! −   !"].     (24) 

 
There remains the difficulty of the π/2 phase shift between the 
cosine in Eq. (2) and the sine in Eq. (24). We leave its 
resolution as a question for the Kirchhoff theory (see 
Appendix) and turn to diffraction with specific apertures.   
 
 
 
Fresnel Diffraction with an Aperture 
 
Interference between the Huygens sources emanating from 
the spherical surface σ produces the wave function that 
arrives at P. Apply Eqs. (3) and (23), switch to complex 
notation for the harmonic dependence, and we obtain 
 
!" =    ℇ!!(!)!"

!"#
  !![! !!! !  !"]       (25) 

 
which will be integrated to find the contribution to the signal 
at P that comes from the Fresnel zones allowed pass through 
the aperture. In Eq. (25) the area da is a patch of area on the 
sphere σ, but the aperture is presumably a plane. However, 
where the sphere σ intersects the aperture in the plane of the 
aperture, the aperture boundary forms the limits of 
integration. Towards this end we construct an xy coordinate 
system in the aperture plane, with the origin lying at the 
intersection of that plane and the SP axis. Note in Fig. 3 the 
distinction between ρ and ρo, the latter being the distance 
from S to the origin of the aperture plane.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  A spherical wave front passing through the aperture of 
area Γ, and the area da. 
 
   In Eq. (25) we may approximate ρ ≈ ρo and r ≈ ro in the 
amplitude. However, the phase is far more sensitive to small 

differences in distances. From Fig. 3, the Pythagorean 
theorem followed by the binomial expansion gives 
 
! =    (!!! +   !! +   !!)

!
! ≈   !! +  

!!!  !!

!!!
  (26) 

and 
! =    (!!! +   !! +   !!)

!
!  ≈    !! +  

!!!  !!

!!!
.  (27) 

 
If only a small number of Fresnel zones are allowed to pass 
through the aperture, the approximation K(θ) ≈ 1 may be used 
for each contributing zone.   
   Now we are ready to integrate Eq. (25) over the aperture. In 
terms using rectangular coordinates, 
 
! ≈ ℇ!

!!!!!
  !! ! !!!!! !  !"    !!"# !!!  !! /!  !"!   (28) 

 
where 
 
 ! ≡    !(!!!  !!)

!!!!!
 .     (29) 

 
From Eq. (1), the wave that would have arrived as a spherical 
wave front at P in the absence of an aperture would have been 
described by  
 
!! ≈   

ℇ!
!!!!!

!![! !!!!! !!"].   (30) 
 
Writing ℇ! =   !!(!! + !!)!!![! !!!!! !!"] and using Eq. (29) 
turns Eq. (28) into 
 
! =   !!

!
!
     !! !!!  !! !"/!    !"! .    (31) 

 
The integral modifies the amplitude and phase of !! thanks to 
the superposition of the portion of σ not blocked by the 
aperture. 
   Consider a rectangular aperture. The limits on Eq. (31) 
become 
 
 ! =     !!

!
!
   !!!!!"/!!"!!
!!

!!!!!"/!!!
!!

!".   (32) 
 
Let ! = ! ! and ! = ! !. Then 
 
! =    !

!
!!    !!"!!/!!!

!!
!" !!"!!/!!!

!!
!". (33) 

 
Introduce the Fresnel integral[7] 
 

! ! ≡    !
!"!!

! !"  !
!   

 
            ≡   ! ! +   !"(!)                                 (34) 
 
where 
 
! !   ≡    cos !!!

!
  !"!

!     (35) 
 
and 
! !   ≡    sin !!!

!
  !".!

!     (36) 
 
Now Eq. (33) may be written 
 
! =    !

!
!! ! !! − ! !! ! !! − ! !! .   (37) 

FIG. 3: A spherical wave front passing through the aperture of 
area Γ, and the area da.

FRESNEL DIFFRACTION WITH AN 
APERTURE
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! =   ! + !" is a complex number. Starting at w = 0, compute 
successive values of !(!) and !(!), then plot them on the 
complex plane. This procedure generates the Cornu spiral, a 
phasor diagram (Fig. 4) named after the French physicist 
Alfred Cornu (1841-1902).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  The Cornu spiral (schematic). 
 
To graphically determine ! ! − ! !   ≡ !!!" draw a 
straight line connecting ! !  and ! ! . The length of this 
line is the magnitude ! ! − ! ! = !, and δ is the angle 
the line makes with the real axis.   
   From the definitions of !(!) and !(!), one may easily 
show that ! −! =   −!(!) and ! −! = −! ! , and that 
! ∞ = ! ∞ = !

!
.[8] For a consistency check consider no 

aperture at all: The limits on both x and y go from −∞ to +∞, 
and Eq. (35) gives the expected intensity, |ψ|2/|ψo|2 = 1. 
   To map the wave function and intensity pattern off the SP 
axis—a main objective of diffraction theory— make an x′y′ 
plane parallel to the aperture plane and passing through P, and 
locate the origin at P. To examine the wave function at (x′,y′) 
= (a′,b′), instead of moving P move the aperture in the reverse 
direction: Merely translate the origin of the aperture 
coordinates by the amount ∆! =   −!′  and ∆! = −!′. Adjust 
the limits on the Fresnel integrals, use Eq. (37), and ψ(a′,b′) 
results. 
   A circular aperture of radius a suggests mapping the plane 
of the aperture in polar coordinates, so that da = 2πrdr. Now 
Eq. (31) becomes 
 
! = !"!! !!"#!!/!  !  !".!

!    (38) 
  
Let ! = !"!!/2, so that  
 
! = !!    !!"  !"!"!!/!

!   
 
      =    2!!!!"#!

!/! sin !!!!
!

.  (39) 
 
Minima (maxima) occur when !!!!/4 = !" where m 
denotes a positive integer (half an odd integer), which 

produces a result analogous to the thin lens equation of 
geometrical optics, 
 
!
!!
+    !

!!
=    !

!!
    (40) 

 
where  fm = a2/2mλ. This exhibits serious chromatic 
aberration! 
   There remains the task to confirm with a derivation the 
behavior of the obliquity factor, K(θ), and put the whole 
Huygens-Fresnel approach on a less cobbled-together and 
more rigorous basis. The main ideas are described in the 
Appendix, highlighting the principal elements of Kirchhoff’s 
diffraction theory. 
 
 

 
Appendix: Kirchoff’s Diffraction Theory 
 
The German physicist Gustav Kirchhoff (1824-1887) derived 
a theory of diffraction based on the linear wave equation.[9] It 
uses a standard tool of field theory, Gauss’s divergence 
theorem, which says the integral of the divergence of a vector 
field A over a volume V equals the flux of A through the 
closed surface Σ that forms the boundary of V: 
 

! ∙ !  !!!! =    ! ∙ !  !"!    (A1) 
 
where ! denotes the outward-pointing unit vector normal to Σ 
on the patch of area da. Consider the case ! = !  !η for some 
scalar fields ζ and η. The divergence theorem gives 
 
[ζ∇!! + !ζ ∙ !η ]  !!!! =    ! !"

!"
  !"!    (A2) 

 
where !"

!"
≡ !ζ ∙ !  denotes the directional derivative.  

Interchange ζ and η and subtract the two versions to obtain 
“Green’s identity,”[10] 
 
[ζ∇!! −   !∇!ζ]  !!!! = [! !"

!"
− ! !"

!"
]    !"! .  (A3) 

 
   Now connect this fancy mathematics to some physics. For 
wave propagation let η be a solution to the inhomogeneous 
wave equation, 
 
∇!!(!, !) −    !

!!
!!! !,!
!!!

= −4!"(!, !)   (A4) 
 
where J denotes a source density. Maxwell’s equations lead to 
such a wave equation. The total signal is a superposition of 
harmonics, where each harmonic carries some angular 
frequency ω. Writing ! !, ! =   ! ! !!!"# and similarly for 
J, the wave equation becomes the inhomogeneous Helmholtz 
equation for !(!), 
 
∇!! ! +  !!!(!) = −4!"(!)  (A5) 
 
where k = ω/c. The Helmholtz equation can be solved by the 
method of Green’s functions, for which a function G(r – r′) is 
found that solves the Helmholtz equation when J gets 
replaced by a point source, 
 
∇!! + !!! = −4!!! ! − !! .  (A6) 
 
The Dirac delta function !! ! − !!  is the density of a point 
source (think of a point mass): It vanishes everywhere except 

FIG. 4: The Cornu spiral (schematic).

APPENDIX: KIRCHHOFF’S  
DIFFRACTION THEORY
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at the source itself, where it blows up. Yet its integral is finite 
(e.g., the integral over all the particle’s density equals its 
mass, whatever its distribution). Thus the Dirac delta may be 
operationally defined as  
 

! ! !! ! − ! !!!! = !(!)  (A7) 
 
provided a lies within V; otherwise the integral vanishes. 
Once G is found, then η follows from the original source 
density J, by Green’s theorem,[11] 
 
! ! =    ! !! !(! − !!)!!!′  (A8) 
 
where the integral is over all space. As shown in 
electrodynamics textbooks, the Green’s function for the 
Helmholtz equation, with outward-traveling spherical waves, 
is a damped oscillation:[12] 
 
! ! − !! =    !

!"#

!
    (A9) 

 
where ! =    ! − !′ . In Eq. (A3) let η = G, and let ζ be the 
“optical disturbance,” e.g., the electric potential ψ of the 
electromagnetic field. With the help of Eq. (A5) in source-
free regions, and Eqs. (A6) and (A7), Eq. (A3) becomes 
 
! ! =    !

!!
! !"
!"
−   ! !"

!"
!".!   (A10) 

 
For the surface Σ consider the arrangement of Fig. 5. Σ does 
not enclose the original wave source S, but it does enclose the 
point P, and the point H lies on the surface of Σ.   
 
From Eq. (2), on Σ at H, 
 
! =    ℇ!

!
!!(!"!  !")    (A11) 

 
so that 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.  The closed surface Σ used in Eq. (A10). 
 
 
!"
!" !

= (! ∙ !)[!"
!
−    !

!!
]ℇ!!!(!"!!").  (A12) 

 
Similarly, by Eq. (A9), 
 
!"
!" !

= (! ∙ !)[!"
!
−    !

!!
]!!"#.   (A13) 

 

Now Eq. (A10) becomes 
 
! ! =
ℇ!
!!

!!" !!!

!
!"
!
−    !

!!
! ∙ ! −!

                                                              !
!" !!!

!
!"
!
−    !

!!
! ∙ ! !".     (A14) 

 
If λ << r and ρ, then we may neglect the 1/r2 and 1/ρ2 terms.  
Eq. (A14) becomes 
 
! ! ≈ !!ℇ!!!!"#

!!
!!" !!!

!"
!∙! !   !∙!   

!
!".!   (A15) 

 
The differential form of Eq. (A15) says that 
 

!" ! ≈ ℇ!
!
  !

![! !!!   !  !"  !  !!]

!"
!∙! !   !∙!   

!
  (A16) 

 
where – ! =    !!!"/!has been used. Eq. (3), when rewritten as a 
complex harmonic, appears as 
 
!" =    ℇ!

!"#
 K(!)  !![! !!! !!"]!"  (A17) 

 
where Eq. (23) has also been used. Comparing Eqs. (A16) and 
(A17), the former has the correct phase, and comparing the 
coefficients shows the obliquity factor to be 
 
! ! =    !

!
! ∙ ! −   ! ∙ ! .  (A18) 

 
It remains to evaluate the dot products between the unit 
vectors, expressing them in terms of observables. Consider for 
this application the doubly-connected surface Σ (Fig. 6), 
whose outer surface Σ2 encloses point P, and whose inner 
surface Σ1 excludes the source point S. A study of Fig. 6 
shows that Eq. (A18) reduces to Eq. (4). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6.  The doubly-connected closed surface Σ made by inner 
surface Σ1 and outer surface Σ2. 
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