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ELEGANT CONNECTIONS IN PHYSICS 

Like a test pilot pushing an airplane prototype to the limits of its capabilities, physics seeks Nature’s fundamental 
limits and then pushes them as far as possible. For instance, special relativity implies that no information can travel faster than 
the speed of light. Quantum mechanics holds that the more precisely we know a particle’s momentum, the less precisely we can know its 
location. The second law of thermodynamics asserts that the efficiency of any two-temperature engine cannot exceed that of the idealized 
Carnot engine, and the third law of thermodynamics implies that a system cannot be cooled to absolute zero in a finite number of steps. 
In optics, diffraction limits the maximum resolution of a telescope and the minimum size of a computer chip circuit made by mask-and-
etch techniques.  
	 Diffraction is the spreading out of a wave into regions that would otherwise be in shadow. A beam of light, even one as tightly con-
centrated as that emerging from a laser, spreads out as it travels, creating a sizable spot when it reaches the opposite side of a room. Such 
displays of diffraction offer clear evidence that light, sound, and other signals can behave as if they are waves.
	 Diffraction can be casually observed in water waves sweeping around a buoy, or in sound waves passing through a doorway. To observe 
diffraction with visible light takes more care. Ever since antiquity, people have wondered “What is light?” By the time of Robert Hooke 
(1635–1703), Christiaan Huygens (1629–1695), and Isaac Newton (1642–1727), responses to the question had been reduced to a binary 
choice: Is light a wave, or is it a beam of particles? Hooke and Huygens argued for waves, Newton for particles. Hooke pointed out that 
producing a specific color in thin-film interference requires choosing a specific film thickness, analogous to tuning the harmonics of an 
organ pipe by adjusting its length. Clearly something periodic occurs with light. Newton observed the variable thin-film interference we 
now call “Newton’s rings.”[1] However, he argued that periodicity is not inherent in light, but is put into light by its interaction with matter. 
	 Noting the blazing speed of light, Huygens argued that, although bulk matter does not travel so fast, a wave might be able to, as illus-

trated with a row of marbles struck sharply at one end. The marbles do not move in bulk, 
but an impulse propagates swiftly down the row. Huygens developed a general model for 
wave propagation around a basic assumption we now call Huygens’ principle. It asserts 
that each point on a wave front serves as the source of a subsequent wave (Fig. 1a). 
	 The laws of geometrical optics follow from Huygens’ construction. Significantly, 
Huygens’ principle also predicted that waves necessarily diffract (Fig. 1b), as point 
sources on a wave front near the edge of an aperture send radiation into regions that 
otherwise would be in shadow. 
	 Settling the argument in favor of waves required a demonstration of diffraction. 
Francesco Grimaldi (1618–1663) was evidently the first to do such a demonstration 
when he placed thin objects such as needles in beams of light and observed fine fringes 
at the edges of the objects’ shadows. But the evidence was not universally convincing, 
especially not to Newton, whose large influence helped to advance the particle model 
over the wave model.
	 Consensus began to build in 1801 when Thomas Young (1773–1829) conducted 
experiments similar to Grimaldi’s using a “slip of paper about one-thirtieth of an inch in 
breadth.” Satisfied that diffraction was real, he then set out to measure the wavelength of 
light by allowing a beam of monochromatic light to pass through two small apertures. 
Upon emerging, the light from one aperture spread out by diffraction and overlapped 

Diffraction, Part 1
HUYGENS’ PRINCIPLE AND YOUNG’S EXPERIMENT

by Dwight E. Neuenschwander, Southern Nazarene University

FIG. 1: (a)  Huygens’ principle. Note that 
the Huygens construction neglects the 
backward-propagating wave, which had to 
be reconciled in mathematical versions of 
the principle using propagator theory. (b) 
Huygens’ principle predicts diffraction.
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WAVES ARE DIFFRACTED around a rocky 
outcrop. Photo by Wing-Chi Poon.
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with the light diffracting from the other aperture. At a given point on a 
screen placed opposite the apertures, the total signal was a superposi-
tion of the undulating light from both apertures, which produced in-
terference. From the intensity pattern, Young measured the wavelength 
of visible light. It turned out to be macroscopically tiny (400–750 nm), 
explaining why the diffraction of visible light is not casually obvious.
	 As Young’s experiment illustrates, interference occurs because 
diffraction spreads the two emerging beams of light into overlapping 
regions. But diffraction itself relies on interference between secondary 
waves emitted from points on the primary wave fronts, as envisioned 
by Huygens’ principle. Interference and diffraction are not independent 
phenomena. 
	 The pattern of water surface waves diffracting around a buoy carries 
information about the buoy’s size and shape. Diffraction measurements 
are thus scattering experiments consisting of three components: waves, 
an obstacle or aperture with which the waves interact, and an image 
formed on a screen or film or charged-coupled device. If you know 
any two of these elements you can infer the third. For instance, if you 
have measurements of the aperture and the image (which is essentially 
the Fourier transform of the aperture or obstacle), you can deduce at-
tributes of the radiation, such as the wavelength in Young’s experiment. 
Conversely, diffraction was crucial in deducing the helical structure of 
DNA, as articulated in 1953 by Francis Crick and James Watson, who 
were guided by an X-ray photograph of the DNA (the obstacle) taken 
by Rosalind Franklin 1951. From the X-rays’ wavelength and mea-
surements made from the image, the double-helix structure could be 
inferred. That hint, and knowing the lengths of adenine-thymine bonds 
and guanine-cytosine bonds, allowed Crick and Watson to assemble a 
detailed model of DNA.  

FRAUNHOFER AND FRESNEL DIFFRACTION
As a wave travels from sources to screen, how does its energy get 
redistributed? What we see on the screen is not the wave function itself 
but its intensity—the time-averaged power carried by the total wave 
function. Since a wave’s energy is proportional to its amplitude squared, 
the amplitude will vary with distance. Let us see how this works.
	 Consider a point source emitting a wave. If no waveguides, ob-
stacles, or apertures interact with the wave, then its rays (normal to 
the wave fronts) propagate radially outward in all directions from the 
source point. By definition, the luminosity L of that source is its time-
averaged radiated power. The energy carried by the wave, emitted by 
the point source during an infinitesimal time interval dt, spreads out 
over the area of a spherical surface with a radius that grows as the wave 
moves outward. The intensity I of the signal is the local time-averaged 
power per unit area received by a detector.[2] For an observer located 
a distance r from an unobstructed point source, the relation between 
received intensity and emitted luminosity is

							       (1)

For light understood as a wave in an electromagnetic field, the intensity 
must also be related to the electric and magnetic field amplitudes. As 
shown in electrodynamics, the observer of an electromagnetic field 
receives an intensity numerically equal to the time average of the 
magnitude of Poynting’s vector S = E×B/μo, where E and B denote the 
electric and magnetic fields, respectively, with μo being the permeability 
of vacuum. Since waves can be written as a superposition of harmonics, 
one should consider a monochromatic sinusoidal wave, where E and 

B have amplitudes Eo and Bo. The harmonic variation in space and time 
enters through the factor cos(kr− ωt), in which k is the wavenumber, 
ω the angular frequency, r the distance from the source, and t the time. 
Noting that E and B are in phase and mutually perpendicular, time-
averaging |S| over one period yields

                     			   (2)

The period is T = 2π/ω, and the square brackets denote a time average. 
Comparing this result to Eq. (1), we see that the amplitude for 
spherically propagating radiation varies spatially as 1/r.

With Euler’s formula

				    (3)

where i2 = -1, complex numbers can alternatively be employed to 
describe a harmonic wave function. ψocos(kr − ωt) gets replaced with 
ψoe

i(kr-ωt), with the understanding that the real part of the complex 
number describes the physical signal. In the language of complex 
variables, the result of Eq. (2) will be retained if we write 
 
                	 (4)

with * denoting the complex conjugate.

When the distance r in Eq. (1) is sufficiently large (the “far field”), the 
wave front passing over the observer is locally indistinguishable from 
a plane. Diffraction produced by plane waves is called Fraunhofer 
diffraction, named after spectroscopist Joseph Fraunhofer (1787–1826). 
When the spherical curvature of the wave front is taken into account 
(the “near field”), the ensuing diffraction is called Fresnel diffraction 
after Augustin Fresnel (1788–1827), who, independent of Young, 
extensively developed the wave model of light, beginning around 1815.  
 	 In the remainder of the present article we will examine Young’s 
experiment. This exercise offers a prototype in terms of plane waves 
for procedures and ways of thinking that will be employed in this 
series on diffraction. In the next article, we will stay for awhile within 
the Fraunhofer paradigm, extend Young’s experiment to multiple 
point sources, and let the sources blend continuously into a single slit 
aperture. We will derive the diffraction pattern produced by a single slit 
and relate it to the pattern produced by an opaque ribbon. Since Young’s 
apparatus involved a pair of narrow slits and not point sources, we will 
study the diffraction pattern produced by two identical slits. The result will 
illustrate the elegant array theorem, which holds that the image produced 
by an array of N identical apertures equals the diffraction pattern of one 
aperture multiplied by the interference pattern of N point sources. 
	 Then we will consider the diffraction produced by rectangular and 
circular apertures. The latter is important because human beings view 
the world through circular apertures—the pupils of our eyes—not to 
mention the circular apertures in cameras, telescopes, and microscopes. 
Before leaving Fraunhofer diffraction we will explain what it means to 
say that the image on the screen is the Fourier transform of the aperture.
	 Moving on to the complications that arise when taking into account 
the spherical curvature of wave fronts, we will study Fresnel diffrac-
tion. Here we will meet a classy tool for reducing complicated definite 
integrals to distances on a chart—the Cornu spiral.[3]
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	 Diffraction is an old subject, now part of the furniture of physics. 
Still, it would be difficult to find many contemporary research topics or 
high-tech applications that do not depend on it in some way. We should 
not take for granted its elegant and useful analytic tools. Today we rely 
on those tools, which were mostly developed during the nineteenth 
century.

YOUNG’S EXPERIMENT

Between 1801 and 1803 Thomas Young, a British medical doctor, 
Egyptologist, and physicist (although the term “physicist” did not exist 
in 1800), performed a double-slit experiment repeated in introductory 
physics laboratories to this day. Young’s experiment cleanly demon-
strated the wave nature of light. That was how light was subsequently 
understood until Einstein’s light quanta paper in 1905 presented the 
utility of a complementary particle model. From the wave-particle 
duality of quantum mechanics that matured in the 1920s, we now know 
that Nature does not neatly partition all of its structures and interac-
tions into the binary categories of particle or wave. Instead of asserting 
that light is a wave, we now say that in some situations light behaves as 
if it were a wave, but in other situations it behaves is if it were a beam 
of particles. Particles and waves are analogies for describing light (and 
electrons—nature is symmetric in these matters). In discussing diffrac-
tion one operates within the wave paradigm.
	 Turning to the details of Young’s experiment, we can conceptualize 
the experiment as the diffraction produced by two point sources emit-
ting coherently, in phase, and with equal amplitude. The experimental 
setup is shown schematically in Fig. 2. 
	 The two point sources are separated by distance a, with the screen 
located distance D away. Field points on the screen are mapped by the 
coordinate s, with s = 0 describing the point on the screen opposite the 
midpoint between the two sources (the sources and s axis are coplanar). 
To emit coherently means the phase difference between the sources 
upon emission remains constant, which is realized in practice by having 
a single beam of monochromatic light illuminate both apertures. To 
emit in phase means the phase difference at emission equals zero.  

	 After leaving the apertures, the signals from both apertures spread out 
and add together to make a pattern on the screen. At time t some of the 
net signal arrives at a location on the screen having the coordinate s. The 
part of the total signal arriving there that came from source one traveled 
along a ray of length r1, and the signal that came from source two traveled 
the distance r2 = r1 + Δr. Upon their arrival at s, the separate signals have 
acquired a phase difference, causing interference when they add together. 
Assuming equal amplitudes upon emission, by superposition the total 
wave function ψ(s,t) (= |E| or |B|) arriving on the screen at location s at 
time t is 

 	 (5)

with ψo(r1) and ψo(r2) denoting the amplitudes of the waves where they 
arrive at the screen. The amplitudes vary as 1/r, but (1/r2) – (1/r1) ~ Δr/r1

2, 
which is negligible. Abbreviating kr1 – ωt ≡ α, Eq. (5) may be written

	  (6)

which introduces a phase shift δ. For the Young experiment δ is acquired 
from the path difference,

 (7)

More generally, δ can also be caused by various other mechanisms, such 
as half-cycle phase shifts due to reflections or a time delay from the waves 
passing through different refractive media.
	 Our mathematical problem is to write the sum of the two cosines in 
a way that can be interpreted. We may choose between three equivalent 
methods: trigonometry identities, complex numbers, or phasor diagrams. 
Let us pursue all three to illustrate the diversity of techniques that will 
prove useful in various diffraction problems. 
	 With trig identities, one uses the clever trick of adding and 
subtracting ½δ in the first term, 
 

      (8)

then abbreviates α + ½δ ≡ φ. By the trig identities for the cosine of a sum 
or a difference, this becomes

 (9)

Using complex numbers Eq. (6) gets replaced with

The real part corresponds to the physical signal:

 (10)

For the phasor diagram approach, pretend the cosine terms in Eq. (6) are 
x components of vectors. Vectors that represent such signals are called 
phasors.[3]  One adds the phasors via usual vector addition and finds the 
x component of the resultant to get the total wave function (see Fig. 3).
 

FIG. 2: Schematic of Young’s experiment. In practice, D >> a and s, so that 
sinθ << 1. Note that the lines of length r1 and r2 are then approximately 
parallel.

.
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Apply the law of cosines to ψ = ψ1 + ψ2:

(11)

The trig identity 1+cos δ = 2cos2(½δ) yields |ψ|2 = 4ψo
2 cos2(½δ). The x 

component of the resultant, the physical total wave function, becomes

 	 (12)

The triangle formed by ψ1, ψ2, and ψ shows that 2β + (π ─ δ) = π, and thus
	  	

(13)

All three approaches give the same answer, as they must, since they are 
different ways of doing the same thing. However you compute it, the total 
wave function arriving at s oscillates harmonically in time, weighted by 
the effective amplitude:

 (14)

By virtue of Eq. (2), the intensity is (see Fig. 4)

 (15)

Intensity maxima, I(s) = 4I(0), occur where cos(½δ) = ±1 so that
 ½δ = πn, with n = 0,1,2,…. Intensity minima, I(s) = 0, occur where 
cos(½δ) = 0 and thus ½δ = (2n’ + 1)π/2 with n’ = 0,1,2,3,…. For δ due 
to a path difference, recalling that k = 2π/λ with λ the wavelength, those 
results give Δr = nλ for maxima and Δr  = (n’ + ½)λ for minima. In 
practice Δr is too small to measure directly with a meter stick. But since  
θ << 1,  Δr may be written, using the similar triangles in Fig. 2, in terms 
of easily measurable parameters:

 (16)

With this method, Young’s experiment facilitates measuring the wave-
length of light.

	 The radiation has so far been assumed to be coherent, which means 
that δ remains constant in time. If the sources emit radiation incoher-
ently (i.e., random emission at the sources), then δ varies randomly with 
time, so cos2(½δ) varies randomly between 0 and 1 and averages to ½. 
Now Eq. (15) reduces to the uniform illumination I(s) = 2I(0). Two iden-
tical candles emitting radiation incoherently merely double the intensity 
of one, and no interference patterns appear.   
	 In the next installment we will recall that the sources in Young’s 
experiment are not really point sources but have finite sizes. Thus to ex-
amine a double slit we must first study in detail diffraction from a single 
slit. Guided by Huygens’ principle, our first intermediate step will be to 
generalize the interference from two point sources to that of multiple 
point sources. The Huygens wave front coming through the slit can then 
be considered the limit of an infinite number of infinitesimally small 
sources. //
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[1] Place a spherical lens on flat glass and shine monochromatic light on 
it from above. The rings of maxima and minima you see in the curved 
wedge of air between the lens and the glass sheet are Newton’s rings.
[2] Some authors call I the irradiance because it is the average power per 
area being absorbed, the opposite of radiance. This term can, however, be 
confusing.  “Irrational” implies “not rational,” possibly leading one to ask 
how irradiance could measure the brightness of a light source.
[3] The Cornu spiral is an elaborate phasor diagram.

FIG. 4: The intensity pattern in Young’s experiment. 

FIG. 3: Phasor diagram construction. Equation (6) is considered the x 
component of this vector sum.  


